STORAGE DEVELOPER CONFERENCE

SD2 Fremont, CA September 12-15, 2022

BY Developers FOR Developers

Optimal Performance Parameters for NVMe SSDs

Presented by Dan Helmick

Agenda

- Example Drive with Terminology
- Optimal Write Parameters
 - NOWS, NPWG, NPWA
- Optimal Deallocate Parameters
 - NPDG, NPDGL, NPDA, and NPDAL
- Optimal Read Parameters
 - NPRG, NPRA

Motivation

 Presentation intended as initial guidance for Enterprise class SSDs setting parameters and Hosts' expectations of those Optimal Performance parameters for NVMe SSDs

Topics

- OPTPERF enabled NPWG, NPWA, NOWS, NPDG, NPDGL, NPDA, NPDAL
- OPTRPERF enabled NPRG, NPRA, and NORS
- NVMe Spec References
 - NVM Express Command Set Specification 1.0b
 - TP4090 Enhanced Deallocation Granularity
 - TP4116 Optimal Read Size and Granularity
 - TP4148 Enhanced Namespace Preferred Deallocation Alignment

Example SSD with Size Assumptions

For example purposes only. Not Representative of any specific NAND or SSD

- 4 Channels
- 12 NAND Die
 - 3 Die per channel
- 2 Planes per Die
- 1,024 EBs per Plane
- SB = Logical Abstraction
 - 1 EB per Plane from 1 Die per Channel
 - Sometimes called: Garbage Collection Unit
- 256 WLs per EB
 - EB = 12MiB
- 3 Pages per WL in TLC NAND
 - Upper Page = UP
 - Middle Page = MP
 - Lower Page = LP
- 4 mapping units per Page
- 4KiB user data per mapping unit

WLS

Some Example Fill Sequences for Super Blocks

Full WL Fill

- Fill each WL
- Fill each Die
- Die Stripe Fill
 - Fill each Page on both Planes
 - Fill each Die
- SB Stripe Fill
 - Fill each Page on all Die

Namespace Preferred Write Granularity (NPWG) and Namespace Preferred Write Alignment (NPWA)

Example Image

- Reminder: Zeros based count of Logical Blocks
- NPWA = 3
- NPWG = 7
- Breakout images for IOs follows

Added Information for Clarity of Example

- Sample LBA numbering
- Logical Block Size = 512B
- Mapping Unit = 4KiB

Continuing with these

assumptions

WLs = 3 pages of 16KiB each

Conclusions

- Writes by SSD will be at the Mapping Unit size
- NPWA = 3 is a poor choice for this example NAND
- NPWA = NPWG = 7 is a better choice

NVM Express[®] NVM Command Set Specification, revision 1.0

Figure 143: Example namespace broken down to illustrate potential NPWA and NPWG settings

6 | ©2022 Storage Networking Industry Association. ©2022 Samsung Semiconductor. All Rights Reserved.

NPWG and NPWA Continued

Conformant IO

- NPWG = NPWA = 7
- Every 4KiB write perfectly matches one Mapping Unit in the SSD
- Aligned Writes of N * 4KiB length perfectly modify N Mapping Units

Non-Conformant IO

- Cause various Read-Modify-Write (RMW) behaviors
 - Write Amplification
- Offset starting LBAs cause a read of the Head Runt
- Offset ending LBAs cause a read of the Tail Runt
- Larger writes will efficiently overwrite the contiguous central data
 - Misalignment impacts reduce with larger IOs
- Writes < NPWG might be able to read Head and Tail runt data from one Mapping Unit

Word Lines (WLs)

			Legend		
			н	Write I/O	
al block			Namespace	Preferred Write Granularity (NP	WG)
			,		
	NPWG				
Figure 1	46: Host writ	e I/O command fol	lowing NPWG but	not NPWA attributes	
al block					
Old Data		New Data		Old Data	
		New Data		Old Data	
<u>r</u>	NPWG		Legend		
	NI WG		H	Write I/O	
			Namespace Pre	erred Write Granularity (NPWG	i)
·					_
		Figu	ire 144: Non-confor	mant Write Impact	
		Figu	ire 144: Non-confor	mant Write Impact	
		Figu logical block	ire 144: Non-confor	mant Write Impact	
		Figu logical block	ire 144: Non-confor	mant Write Impact	_
		Figu	re 144: Non-confor New Data	mant Write Impact	
		Figu	re 144: Non-confor New Data	mant Write Impact Old Data	
		Figu	New Data	Mant Write Impact	
		Figu	Ire 144: Non-confor New Data	Mant Write Impact	
		Figure logical block	New Data	Mant Write Impact	

STORAGE DEVELOPER CONFERENCE

NPWG and NPWA Discussion

NPWG

Equal to Mapping Unit can be a great choice

NPWA

Normally going to be set equal to NPWG

Other values can be used

- Unusual controller features or Metadata placements
- New NAND access possibilities

Summary

- Generally set and defined by the drive and NAND characteristics
- Avoids most harmful write performance penalties
 - Example focus today: Read-Modify-Write penalties
- Does not necessarily fully optimize write performance
 - But may get you close to optimal

Namespace Optimal Write Size (NOWS) in the Context of Some Example Writing Sequences

Full WL Fill

- NOWS = 16KiB
- GC would be triggered with Full Page Reads
- Die Stripe Fill
 - NOWS = 32KiB
 - Perhaps 16KiB
 - SQ/CQ overheads are sufficiently small
 - More than QD1
 - Host cannot accumulate 32KiB reliably
- SB Stripe Fill
 - NOWS = 128KiB
- Conclusions
 - Focus of this slide is an architectural discussion on NAND access optimizations for NOWS
 - Other optimizations possible
 - NOWS = 4KiB is a valid setting
 - But it doesn't provide the Host any guidance above and beyond NPWG
 - Command lengths of M * (NOWS) expected to be equal or better performance than NOWS
 - Customer conversations have great value for setting an NOWS for their deployments
 - Feasibility of accumulating write sizes from end Applications
 - Expectations on Host outstanding QD or QoS

9 | ©2022 Storage Networking Industry Association. ©2022 Samsung Semiconductor. All Rights Reserved.

Write Performance and Optimal Performance Settings

Performance Plot sketched for Context

- Ignoring Vendor specific behavior changes
- RMW impacts are clear at less than Mapping Unit Size
 - NPWG and NPWA is easily distinguished
- For Large Command Sizes
 - Write Buffer Obscures internal impacts
 - NOWS Settings can be hidden
- NOWS Selection could focus on Secondary Aspects
 - Mixed Performances (BW or QoS)
 - Read Performances that are measured later
 - Controller QoS impacts
 - Endurance or Media aspects
- Customer–Vendor discussions can be valuable for setting NOWS

Optimal Deallocate Parameters

Namespace Preferred Deallocate Granularity and Alignment (NPDG and NPDA)

- Optimal NPDG and NPDA provide Write Amplification Factor (WAF) = 1
 - Achieved if EBs are erased without any GC
- Example for NAND managed in SB groupings
 - Sequential Writes fill a SB
 - SB = (1EB per Plane) * (2 Plane per Die) * (1 Die per Channel) * (4 Channels)
 - SB ~= 100MiB for example numbers in this presentation
- NPDGL and NPDAL
 - Added to the spec to enable very large SB erases

Some Recommendable Host Uses of NPDG and NPDA *Assuming NPDG = NPDA = SB Size

Similarities to Streams Granularity Size (SGS)

- Circular logs sized to NPDG=NPDA=SGS
- Sequential writes deallocated in NPDG multiples
 - SSD Cache Manangement
- Log Structured File Systems

Similarities to Zoned Namespaces (ZNS)

- Writing too much to a Zone provides hard errors while overwriting NPDG and NPDA will
 receive no information from the drive
 - NPDG and NPDA are most relevant as guidance for single tenant Conventional NVMe usage
- Sequential writes deallocated in NPDG multiples
- Log Structured File Systems
 - RocksDB has been used in many presentations on ZNS

Why would NPDG and NPDA Differ from SB Size?

- Difficult for Hosts to aggregate SB Size of data
 - Today's SSDs can have 16+ Channels and EBs grow in capacity every generation
- Internal controller HW capabilities and optimizations
- NAND Features
- Behavior alignments of Write Fill and/or SSD Algorithms

Vendor-Customer discussions can provide more specific guidance and alignment to customer use-cases

Namespace Preferred Read Granularity (NPRG) and Namespace Preferred Read Alignment (NPRA)

- Read Granularities and Alignments follow similar Host rules as Optimal Write parameters
- Reasons NPRG/NPRA may be Different from NPWG/NPWA
 - NAND often has the ability to be more precise on Reads with fewer physical restrictions
 - ECC capabilities may be optimized for common accesses
 - Controller Metadata or User Data layouts on the NAND
 - No RMW penalty for small Reads
- NPRG/NPRA selections can be a minor impactor in many SSDs

Namespace Optimal Read Size (NORS)

- Similar to NOWS; NORS can have several best answers
 - NOWS
 - Mapping Unit
 - Page or Page Stripe
- Setting NORS benefits from a Vendor-Customer conversation
 - Optimizing SSD Architecture and Host SW should be an ongoing bidirectional conversation
- One Caveat for NORS
 - NORS values larger than a Mapping Unit may not be valid if an errant Write throws off alignments.

Non-adherence to write-related performance attributes (i.e. NPWG, NPWA, NPDG, NPDGL, NPDA, and NOWS), across all the namespaces in:

- a) the same NVM Set;
- b) the same Endurance Group when NVM Sets are not supported; or
- c) the NVM subsystem when Endurance Groups are not supported,

may affect the level of read optimization achievable through the usage of NORS as described in this section.

15 | ©2022 Storage Networking Industry Association. ©2022 Samsung Semiconductor. All Rights Reserved.

• NORS of 16KiB successfully gives full page reads

- One write **fails** to follow a NOWS of 16KB.
- Therefore, NORS of 16KiB is now reading from 2 pages
- Format likely required to fix

Dan's Summarized Guidelines on Optimal Performance Parameters No strict rules in this list

- NPWG = NPWA = Mapping Unit
- NOWS = NAND or Controller Optimized Size
 - NOWS > NPWG
 - Provide additional information. Don't report NOWS=NPWG.
 - NOWS = Page is a fair start
- NPDG = NPDA = SB groupings
 - But often this may be too large for Hosts to aggregate
 - Second best values should be discussed
 - NPDG/NPDA can be used as additional guidance for writes (SGS and Zone like behavior)
- NPRG = NPRA = Logical Block Size
 - Or perhaps Mapping Unit
- NORS = NOWS
 - Or perhaps Mapping Unit
 - NORS > NPRG
 - Provide additional information. Don't report NORS=NPRG

Host Programing

In order of Importance

- Writes
 - 1. NPWG = Hard lower bound
 - 2. NOWS = Goal write accumulation size
 - 3. Multiples of NPWG and NOWS
- Deallocates
 - 1. Deallocate large spans ASAP
 - 2. NPDG or multiples = Goal
- Reads
 - 1. Request the data needed
 - Don't read extra to reach NPRG or NORS
 - Optimize SW stack for Writes and Deallocates first
 - 2. NPRG = Goal read size
 - 3. NORS = Nice to have
 - 4. Multiples of NPRG and NORS = Bonus points

Please take a moment to rate this session.

Your feedback is important to us.

17 | ©2022 Storage Networking Industry Association. ©2022 Samsung Semiconductor. All Rights Reserved.