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Dual Machine Learning (ML) Models

= The first ML model can predict the imminent component failure for
preventive maintenance.

- Storage device quality control

* The second ML model can forecast the quantity of long-term failure
parts for supply chain inventory control.

- Supply chain management

- Both models require sensor data on electronic devices in a storage
system.
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Prediction model generation
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Sensor Data collection

= Keep track of millions of electronic devices in the customer data center
= CallHome program collects the sensor data of the customer side.
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Sensor data

= Time-series data
= All kinds of environmental activities (temperature, voltage,...)
= Errors values of electronic devices

= For Hard disk drive(HDD)

= Read / Write correctable / uncorrectable errors
= Read / Write |I/O counts per drive per second
* Provide the detailed diagnostic information about the various error conditions

= Network traffic by # of I/O counts
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Casual Inference for feature selection
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First ML model: Prediction of HDD failure

* The model predicts HDD as impending “fail” or “good” with HDD sensor
data.

= The model is trained with the historical data of both fail and good HDD.

= eXtreme Gradient Boosting (XGBoost) used as ML model
= Build an ensemble of decision trees sequentially
= Each tree is trained to correct the errors of its predecessors

= Which HDD sensor data is included for the model generation?
= XGBoost feature importance rank the sensor data
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Machine Learning (ML)-driven predictive maintenance
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First ML model: Performance metric

= ROC (Receiver operating characteristic) curve
= TPR (True Positive Rate), FPR (False Positive Rate)

= The orange curve is TPR vs FPR across all thresholds.
= The closer to the upper left corner is

the higher accuracy (TPR=1, FPR=0)
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First ML model: Lead Time

= | ead time is the time from model detection to actual failure.

* From issuing the service tickets to replacing drives, the long lead time is
required.

= Qur model shows ~ 5months lead time.
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Covid shutdown / reopen

= Failure rate w/o and w/ proactive HDD removal, lead time ~5 months
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The second ML model

= Supply chain quantity estimation model
= Need a model to guarantee procurement time that acquires the new parts before

failure

= By using XGBoost model, count the residual unfailed drives
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The second ML model
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demand is estimated by

= (NQ1-6|\/|+ NQ1-3|\/| + NQ1) / alpha Current quarter
Alpha is derived by the
regression and TPR
= Reduce the risk of the
supply chain shortage
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SSD Failure Prediction

= New sensor features model

= Early deployment success
= Before deploy in a region : 80+ failures
= After proactive removal :4 unanticipated failures

Roc Curve (Test data)

= 98% in accuracy in failure quantity one quarter ahead
of time
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Voltage Regulator failure prediction

True Positive Rate

Long lead time prediction model
> 6 months before system failure

Receiver operating characteristic (Test data)
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True Positive Rate

Detection of imminent fail in storage system
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Conclusion

* Presented the predictive maintenance model of storage component failure

= The quarterly failure prediction model is developed by using the short-term failure
prediction model.

= The quarterly failure model helps the supply chain management.

= The collection of historical sensor data is required to train the model.

= The selection of the sensor data related to the failure is the most critical step.
= The lead time of the model will decide if the model is deployable or not.

= The trade-off between accuracy and the lead time is unavoidable.
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Please take a moment to rate this session.

Your feedback is important to us.
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