UCIe 2.0 Specification:
Advancing an open ecosystem for on-package chiplet innovation

Agenda

- Introduction
- UCIe 2.0 Overview
- Introducing UCIe-3D
- Addressing SIP Challenges through DFx
- Optional Manageability Features & UDA
- Additional Updates

2

Universal Chiplet Interconnect Express (UCIe): An Open Standard for Chiplet Development

Guiding principles of UCIe

- Open chiplet ecosystem
- Backward compatible evolution to ensure investment protection
- Optimized power, performance, and cost metrics applicable across the entire compute continuum
- Continuously innovate to meet the needs of evolving ecosystem

Leveraging decades of experience driving successful industry standards at the board level: PCIe, CXL, USB, etc.

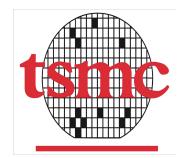
High-bandwidth, Low-latency, Power-efficient, Cost-effective Interconnects for AI, HPC, Cloud, Edge, Enterprise, 5G, Automotive, Handhelds

Board Members

Leaders in semiconductors, packaging, IP suppliers, foundries, and cloud service providers are joining together to drive

the open chiplet

ecosystem.



130+ Member Companies...and growing!

Achronix Semiconductor Corp

Advanced Micro Devices

Advanced Semiconductor

Engineering, Inc.

Advantest America, Inc.

Akrostar Technology Co., Ltd

Alchip Technologies, Ltd. Taiwan Branch

Alibaba Inc.

Alphawave Semi

Amkor Technology, Inc.

Ampere Computing

Analog Devices Incorporated

AP Memory Technology

Corporation

Applied Materials, Inc.

Arm Limited

Arteris, Inc.

ASMedia Technology Inc.

Astera Labs

Atron (Chongqing) Technologies,

Limited

Ayar Labs

Beijing Henghuizhixun Technology Co., Ltd.

Blue Cheetah Analog Design Inc.

BMW of North America LLC

Broadcom Inc.

Cadence Design Systems Inc.

Ceremorphic, Inc.

ChangXin Memory Technologies,

Inc.

Ciena Corporation

CoMira Solutions Inc

Credo Semiconductor, Inc

Deca Technologies, Inc.

DENSO Corporation

d-Matrix

Douyin Vision Co., Ltd

Dream Chip Technologies GmbH

DreamBig Semiconductor Inc.

ECARX Limited

Egis Technology Inc.

e-Infochips Inc (An Arrow

Company)

Eliyan Corp.

Ericsson AB

eTopus Technology Inc.

EVAS Intelligence Co., Ltd.

EXTOLL GmbH

ForwardEdge ASIC

FuriosaAi

Futurewei Technologies, Inc.

Global Unichip Corporation (GUC)

GlobalFoundries U.S. Inc.

GM Global Technology Operations LLC

Google

HANA Micron, Inc.

Honda Motor Co., Ltd.

Huixi Technology Co. Ltd (Rhino Auto)

IBM

Imec vzw

Infineon Technologies AG

InfiniLink Inc.

Innosilicon Microelectronics

(Wuhan) Co. LTD.

Intel Corporation

Inpsytech, Inc.

JCET Group Co., Ltd.

Kandou Bus SA

Keysight Technologies

Kiwimoore (Shanghai) Semiconductor Co., Ltd_

KNiulink Semiconductor Ltd.

Kyocera-AVX

LG Electronics

Lightmatter

M SQUARE Ltd. Shanghai

M2 Semiconductor Ltd.

Macronix International Co., Ltd

Marvell Asia PTE Ltd

MediaTek Inc.

Mercedes-Benz Research & Development North America, Inc.

Meta Platforms, Inc.

Microchip Technology Inc.

Micron Technology Inc

Microsoft

MIPS Tech LLC MIRISE Technologies

Corporation

Mixel, Inc.

MosChip Technologies
National Institute of Advanced
Industrial Science and
Technology

nepes Corporation

Neuchips Inc.

Neuron IP Inc

NHanced Semiconductors, Inc. Nippon Telegraph and Telephone Corporation

Nissan Motor Co., Ltd. Nokia Solutions and Networks Ov

Nuclei System Technology Co., Ltd

NVIDIA

OPENEDGES Technology. Inc.
Physim Electronics Technology
Co., LTD
Powerchip Semiconductor

Manufacturing Corp (PSMC)

proteanTecs, LTD.

Qualcomm, Inc.

Qualitas Semiconductor

Rapidus Corporation

Rebellions

Renesas Electronics Corporation

Robert Bosch GmbH

Rohde & Schwarz GmbH & Co.

Samsung Electronics Co, Ltd.

Sanechips Technology Co., LTD

Semitronix Corporation

Shanghai UniVista Industrial Software Group Co., Ltd. Shanghai Zhaoxin Semiconductor Co., Ltd. Shinko Electric Industries Co., LTD. Siemens Industry Software

SiliconAuto B.V.

Siliconware Precision Industries Co. Ltd.

SK Hynix Inc.

SkyeChip

Inc.

SmartDV Technologies

Socionext Inc.

Synopsys Inc

Taiwan Semiconductor Manufacturing Co., Ltd.

Tektronix Inc

Tenstorrent Inc.

Teradyne, inc.

Texas Institute for Electronics,
The University of Texas at
Austin
Texas Instruments
Incorporated

The MathWorks, Inc.

Thine Electronics, Inc.

Tongfu Microelectronics Co., Ltd

Toyota Motor Corporation

Truechip Solutions PVT LTD
Tsavorite Scalable Intelligence,

Unisoc (Shanghai) Technologies Co., Ltd

University of New Hampshire

Untether AI

Valens Semiconductor

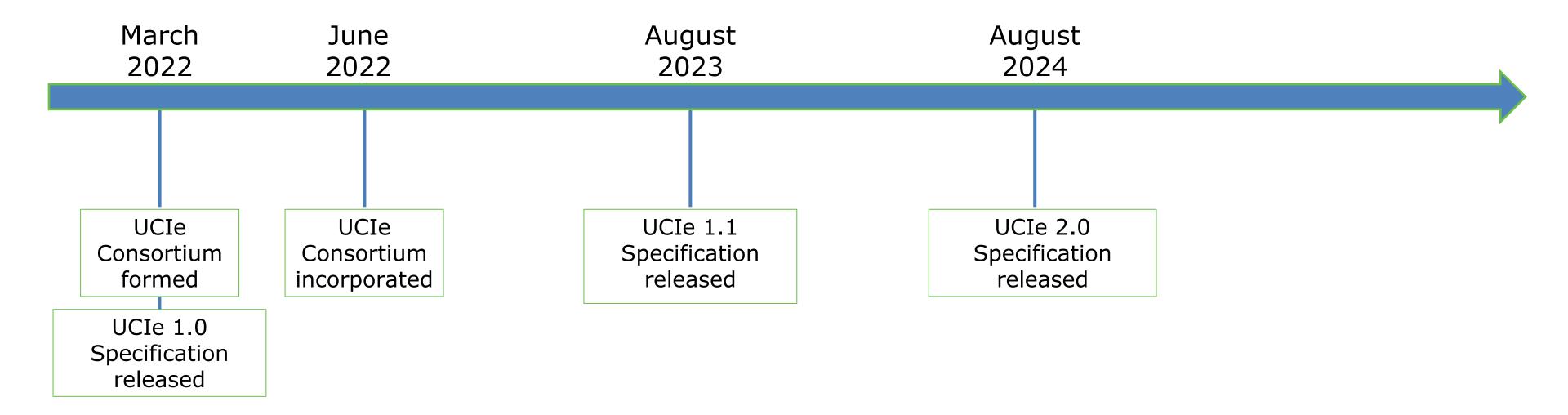
Ventana Micro Systems Inc

VeriSilicon, Inc.

VIA NEXT Technologies, Inc.

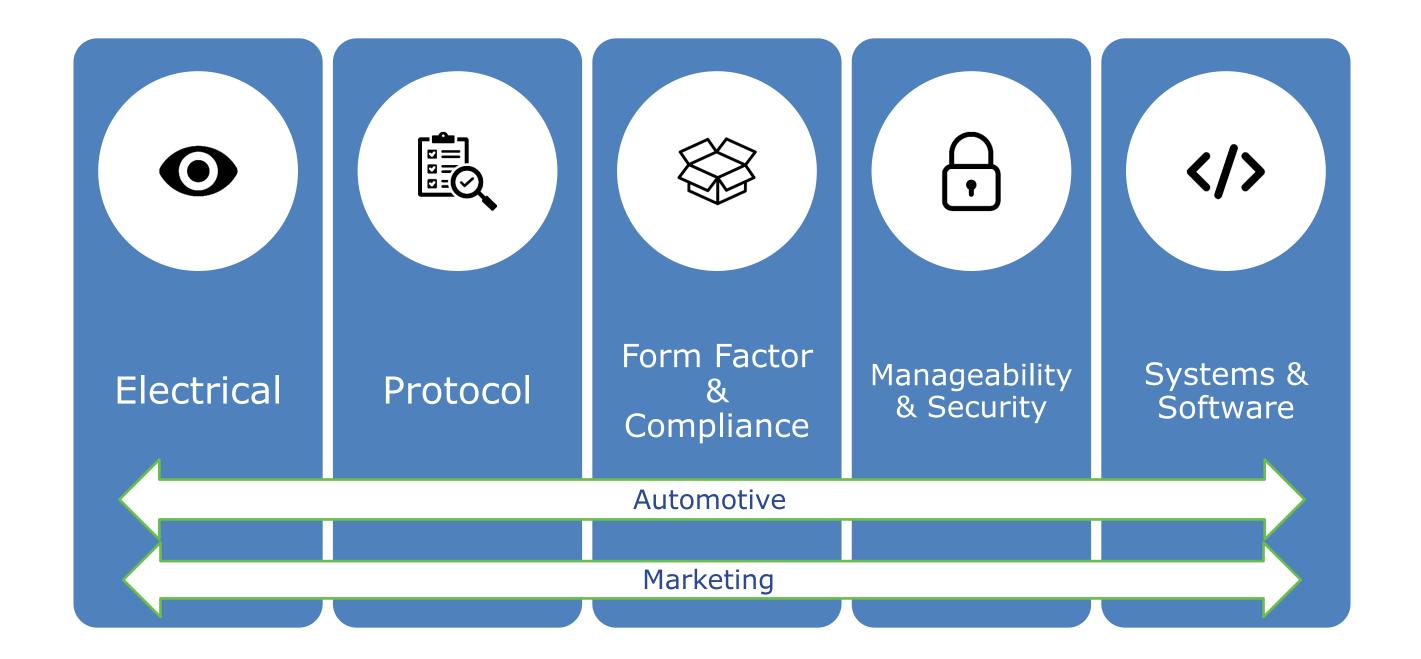
Volkswagen Aktiengesellschaft

Winbond Electronics Corporation xFusion Digital Technologies Co., Ltd Xi'an UniIC Semiconductors Co.,Ltd.


Xpeedic Co., Ltd.

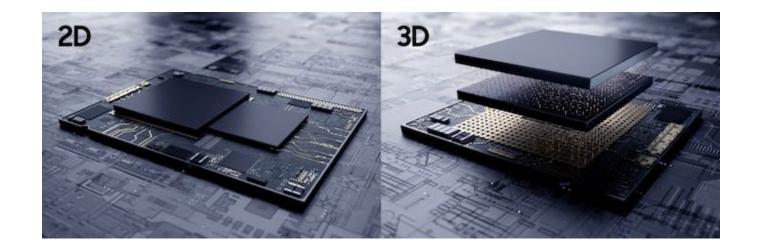
Xsight Labs Ltd.

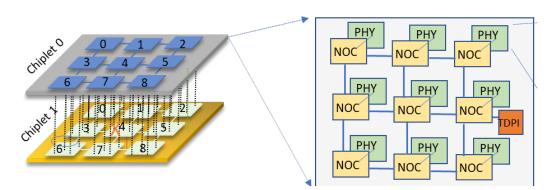
Zero ASIC Corporation Zhejiang Zentel Memory Technology Co., Ltd.


Member Driven Evolution

UCIe Consortium Working Groups

Working Groups are identifying and addressing the demands of a complete, full-stack solution for strengthening the open standards-based ecosystem.


UCIe 2.0 Specification Feature Overview


- Support for 3D packaging to significantly enhance bandwidth density and power efficiency
- Holistic support for manageability, debug, and testing for any Systemin-Package (SiP) construction with multiple chiplets
- Ball map optimizations
- Heterogeneous package designs for interoperability and compliance testing
- Fully backward compatible with UCIe 1.1 and UCIe 1.0

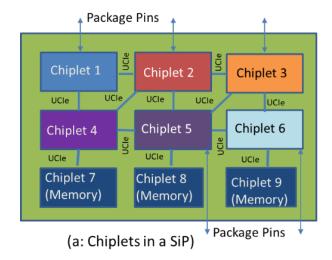
UCIe-3D for Vertical Integration

- Evolution from UCIe 1.0/1.1 to UCIe 2.0 with 3D chiplets
- Bump pitch scaling and bandwidth density benefits
 - Optimized for <=10 um bump pitch with >10 to 25um also supported
 - Significant increase in # of connections (inversely squared with area)
 - 3D interconnect reduces interconnect distance between chiplets to practically 0
- Areal connection advantages and PHY area utilization
 - Not limited to sides = entire chiplet area available

Example Usage (Figure 5, UCIe 2.0 Specification)

- Increased bandwidth density and reduced bump pitch
- Simplified associated circuitry for bump-limited design
- Power efficiency gains with reduced interconnect distance

Expanding Industry Leading KPIs to 3D


Characteristics / KPIs	UCIe-S (2D)	UCle-A (2.5D)	UCle 3D	Comments for UCIe 3D	
Characteristics					
Data Rate (GT/s)	4, 8, 12, 16, 24, 32		Up to 4	= SoC Logic frequency – power efficiency is critical	
Width (each cluster)	16	64	80	Options or reduced width to 70, 60	
Bump Pitch (μm)	100 – 130	25 – 55	<pre>< 10 (optimized) > 10 - 25 (functional)</pre>	Must scale so that UCIe-3D fits within the bump area, must support hybrid bonding	
Channel Reach (mm)	<u><</u> 25	<u>≤</u> 2	3D vertical	FtF bonding initially; FtB, BtB, multi-stack possible	
Target for Key Metrics					
BW Shoreline (GB/s/mm)	28 – 224	165 – 1317	N/A (vertical)		
BW Density (GB/s/mm ²)	22 – 125	188 – 1350	4000 at 9μm	4TB/s/mm ² @ 9μm, ~12TB/s/mm ² @ 5μm, ~35TB/s/mm ² @ 3μm, ~300TB/s/mm ² @ 1 μm	
Power Efficiency Target (pJ/b)	0.5	0.25	<0.05 at 9µm	Conservatively estimated at 9µm pitch <0.02 for 3µm pitch	
Low-Power Entry/Exit	0.5nS < 16G, 0.5-1nS > 24G		0nS	No preamble or post-amble	
Reliability (FIT)	0 < FIT (Failure in Time) << 1		0 < FIT << 1	BER < 1E-27	
ESD	30V CDM		5V CDM → <_3V	5V CDM at introduction, no ESD for W2W hybrid bonding possible	

Design for Manageability and Test/Debug/Telemetry (DFx)

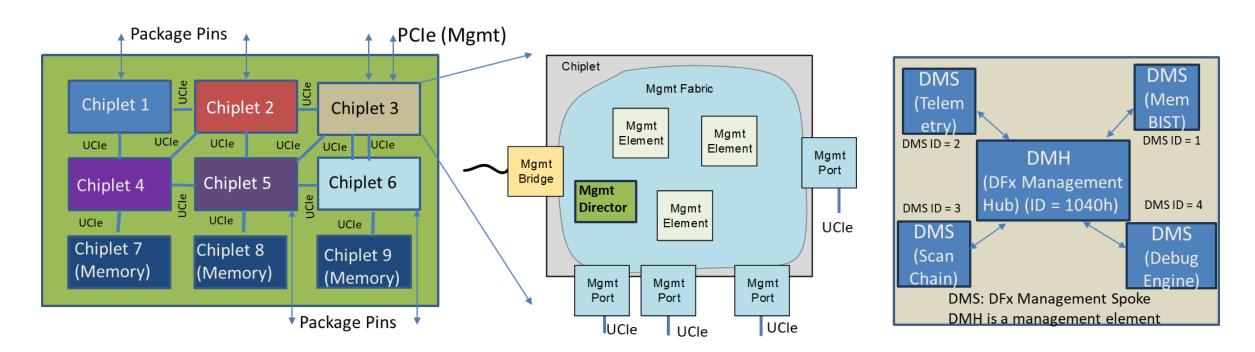
- Support at chiplet and SiP level to manage and test in a plug and play ecosystem
 - Examples: lane margining, compliance testing, fault reporting, sideband access
 - Different chiplets could have different interfaces or supported speeds
 - Only access control security is defined in UCIe 2.0.
- Throughout the Si life cycle: From the die at sort, to package/bond, to field level debug or repair
- UCIe 2.0 defines:
 - Common infrastructure using current IP building blocks as well as external interfaces at the package level
 - Bridging to connect to an external interface (e.g., SMBus or PCIe) for off-package connectivity.
 - Root of Trust
- UCIe 2.0 manageability may be used to perform services such as:
 - Discovery of chiplets and their configuration
 - Initialization of chiplet structures and parameters
 - Error reporting

- Retrieval of log and crash dump information
- Test and debug
- Aspects of chiplet security

UCle-S	Main band: 512Gb/s/direction [x16 @ 32Gb/s] Side band: 800Mb/s/direction		
PCle	1024Gb/s/direction [x16 @ 64Gb/s]		
USB	80 Gb/s/direction [x2 @ 40Gb/s]		
JTAG (IEEE 1149.1)	5-100Mb/s/direction		
IEEE 1838	>100Mb/s/direction with FPP		
I2C/SMBus	400Kb/s		
I3C	33Mb/s/direction		

Bandwidth

(b: Bandwidth of various Interfaces: UCle and External)


Source: UCIe 2.0 Whitepaper Fig 1

1b) references interfaces that can be probed, e.g. UCIe bumps

Test/Debug Interface

UCIe DFx Architecture (UDA)

- Hub-Spoke model within each chiplet
- Each chiplet supports a DFx Management Hub (DMH): gateway to accessing all test, debug, and telemetry capabilities within a chiplet
- DMH provides discovery and routing of management transport packets to various DFx Management "Spokes" (DMS)
- Spokes are the entities implementing a given test, debug, or telemetry functionality
- Config registers + UCIe-wrapper on top of existing registers provide a common framework for software
- Vendor-specific drivers can be loaded for each unique functionality, based on the Device ID (DID)
 of the spoke

Summary

- UCIe Consortium continues to evolve UCIe technology in a backward-compatible manner comprehending new usage models, additional cost optimization, and towards a robust compliance mechanism.
- UCIe is an open industry standard that establishes an open chiplet ecosystem and ubiquitous interconnect at the package level.
 - Tremendous support across the industry with several companies announcing IP/VIP availability
 - Evolving as the interconnect of SoCs just as PCIe and CXL at the board level
 - UCIe 2.0 Specification is available to the public https://www.uciexpress.org/specification
- UCIe Consortium welcomes interested companies and institutions to join the organization at the Contributor or Adopter level.
- 6 Technical Working Groups (Electrical, Protocol, Form Factor/Compliance, Manageability/Security, Systems and Software, Automotive) alongside the Marketing Working Group are driving the technology toward the future.
 - Incredible innovation happening in the Consortium!
- Get involved! Learn more by visiting www.UCIexpress.org

Thank You

www.UCIexpress.org

