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Sunfish Overview
What is Sunfish?
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Composable Disaggregated Infrastructure (CDI)

CDI enables assigning pools of resources to consumers
 Started with disaggregated storage
 Moving towards disaggregated memory and disaggregated accelerators
 Assigned resources may be private to or shared among consumers

CDI requires one or more interconnecting fabrics
 Disaggregated storage is already supported on several fabrics

 For example: Infiniband, Ethernet, PCIe and FibreChannel 
 Disaggregated memory requires a memory semantic fabric 

CDI needs to avoid disaggregated management stacks
 Disaggregated resources come with independent management tools

Sunfish provides a framework for wrangling the multitude of independent management tools behind a single, consistent, 
standards-based API
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Sunfish

 Composable disaggregated infrastructures provide a promising solution to 
addressing the provisioning and computational efficiency limitations, as well as 
hardware and operating costs, of integrated, siloed systems. But how do we solve 
these problems in an open, standards-based way?
 The Sunfish project, a collaboration between DMTF, SNIA, the OFA, and the CXL  

Consortium exists to provide elements of the overall solution, with Redfish® and 
SNIA Swordfish  manageability providing the standards-based interface.
 Sunfish is designed to configure fabric interconnects and manage composable 

disaggregated resources in dynamic High Performance Computing (HPC) 
infrastructures using client-friendly abstractions.
 This presentation will highlight an open, standards-based approach to composable 

resource management for disaggregated infrastructures through Sunfish.
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HPC Applications

 Integration with Flux as a job manager to allocate disaggregated 
resources
 Will allow allocation of fast near-node storage appliances for future HPC 

systems
 Could also allow similar integration of Fabric-Attached Memory (FAM)
 Looking to allocate AI/ML accelerators between HPC clusters using different 

fabrics
 Allow users to get stats on how their code actually ran on the 

hardware/fabric/accelerator
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The Sunfish Objective in Visual Form
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The Sunfish Open Fabric Management Framework
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Sunfish Hardware Agents

Many different hardware 
manufacturers can easily create 
agents for Sunfish.
Sunfish is based on Redfish, so 

agent creation is straightforward 
for other Redfish-based 
implementations.
Our alpha reference agent 

emulator is available on Github 
here: 
https://github.com/OpenFabrics/s
unfish_agent_reference

https://github.com/OpenFabrics/sunfish_agent_reference/tree/rh-cxl-agent
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Sunfish Agents and Integration
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Swordfish Integration

 Sunfish will soon have a Swordfish 
agent that registers with Sunfish 
and uploads descriptors.
 The Swordfish Agent will manipulate 

the resources, and will be a wrapper 
around the existing Swordfish API 
Emulator.
Our alpha Swordfish API Emulator 

for Integration is here: 
https://github.com/OpenFabrics/sunf
ish_agent_reference/tree/rh-cxl-
agent

https://github.com/OpenFabrics/sunfish_agent_reference/tree/rh-cxl-agent
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Merging Multiple Agent Resource Trees

Sunfish enables integration of heterogeneous fabrics with different 
resource description frameworks.
 The two important problems to solve when working with multiple Agents:
 Sunfish must detect and resolve Redfish URI namespace conflicts
 Sunfish must detect and resolve Boundary Component duplicates
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A Simplified Redfish Model of CXL FAM Appliance

 The Enclosure Manager and/or its 
Sunfish CXL Agent create a Redfish 
model of the resources within the 
Appliance

 This model is created within its own 
Redfish URI namespace

 The Enclosure Manager/Agent  
recognizes ONLY this URI namespace

 Multiple enclosures may all use the 
same local URI naming conventions
 E.g., every instance of such an enclosure 

may name its enclosure’s fabric  
“/redfish/v1/Fabrics/CXL”
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Managing Multiple Agents

 Sunfish Aggregates resources from multiple 
hardware managers

 Hosts have BMCs and OS 
 Storage and FAM Appliances have Enclosure 

Managers
 Each of these hardware manager / Agent 

stacks has their own management domain and 
Redfish URI namespace

 In this topology, each CXL Enclosure is an 
independent CXL Fabric
 No Switch-to-Switch links
 Single level switch topology 

 Sunfish Service eliminates duplicate URIs that 
may occur because the two Enclosure 
Managers may both use the same Redfish 
URIs 

 Sunfish Service also needs to merge the 
Redfish URI namespaces of the System Agent 
and the two CXL Agents

 Dotted links are Boundary Links that cross 
hardware manager domains
 E.g. links between a Host and an enclosure 
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A Merged Redfish Model of 2 Fabric Appliances

 Merging multiple Redfish URI 
namespaces is relatively easy if 
the actual hardware / logical 
instances are independent

 Sunfish keeps track of all URIs it 
translates from a given Agent’s 
URI namespace to the URI used 
in the Sunfish URI namespace

 Sunfish must validate that the 
Fabrics and Chassis involved are 
completely independent

 Every physical device on every 
fabric needs to have a hardware 
ID that is unique within the scope 
of the Sunfish Services

 Sunfish keeps a list of all 
hardware IDs and searches for 
duplicates as each new resource 
is inserted into the database
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Storage Capabilities in Progress

Management of NVMe native devices along with NVMe appliances through 
Sunfish’s Swordfish Agent
 Aggregation of multiple Swordfish targets
 Adaptation of SNIA Swordfish compliance testing
Our video tutorial is coming soon here: https://www.openfabrics.org/snia-and-

the-ofmf/
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Sunfish Status

New Releases Planned
 Customization plugin
 Redis storage backend

Soliciting new use cases and hardware
 Started working on the Flux client side

Working on client-side resource blocks and resource managers
Creating a reference CXL Agent
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Find us at SC!

We will be holding a Sunfish BoF at SC this year:
 Tentatively scheduled for Thu Nov 21, 12:15pm-1:15pm in Room B214

We will be at the Open Standards Pavilion (Booth 1815)

https://hallerickson.ungerboeck.com/prod/app85.cshtml?aat=336f31422f357077586f44585a42586135774b4c3831752f386373426d35584b745a5a507a4955797236633d&ExhibitorID=7657
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Summary

Sunfish allows allocating multiple different Redfish-derived hardware 
agents from different vendors in the same Sunfish instance.
Sunfish can also merge different fabrics via its service layer.
Sunfish is currently targeting Kubernetes via several operators and the 

Flux scheduling framework for HPC.
We will have a BoF and several demos during SC.
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Questions?

Read the docs here!
https://github.com/Open

Fabrics/sunfish_docs

Join our development here!
https://www.openfabrics.org
/openfabrics-management-

framework/

https://github.com/OpenFabrics/sunfish_docs
https://www.openfabrics.org/openfabrics-management-framework/
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Backup Slides
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Demo
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A Simplified Redfish Model of Multiple CXL Appliances

 What if we have two of these 
enclosures?

 We have two Redfish roots, 
with two possibly conflicting 
URI namespaces.

 Sunfish Framework defines 
how to handle this
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Managing CXL Boundary Components
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Managing CXL Boundary Components
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Merging Multiple Agent Resource Trees
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Merging Multiple Agent Resource Trees
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