
1 | ©2024 SNIA. All Rights Reserved.

September 16-18, 2024
Santa Clara, CA

OFA Sunfish
New Applications for Distributed Storage with SNIA

Swordfish®
Nathan Hanford

LLNL-PRES-2000486
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under
contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

2 | ©2024 SNIA. All Rights Reserved.

Agenda

Sunfish Overview
Sunfish and Agent Communications
Sunfish and Multiple Agents
Boundary Component Merging from Multiple Agents
Status of Sunfish
Summary and Wrap-up

3 | ©2024 SNIA. All Rights Reserved.

Sunfish Overview
What is Sunfish?

4 | ©2024 SNIA. All Rights Reserved.

Composable Disaggregated Infrastructure (CDI)

CDI enables assigning pools of resources to consumers
 Started with disaggregated storage
 Moving towards disaggregated memory and disaggregated accelerators
 Assigned resources may be private to or shared among consumers

CDI requires one or more interconnecting fabrics
 Disaggregated storage is already supported on several fabrics

 For example: Infiniband, Ethernet, PCIe and FibreChannel
 Disaggregated memory requires a memory semantic fabric

CDI needs to avoid disaggregated management stacks
 Disaggregated resources come with independent management tools

Sunfish provides a framework for wrangling the multitude of independent management tools behind a single, consistent,
standards-based API

5 | ©2024 SNIA. All Rights Reserved.

Sunfish

 Composable disaggregated infrastructures provide a promising solution to
addressing the provisioning and computational efficiency limitations, as well as
hardware and operating costs, of integrated, siloed systems. But how do we solve
these problems in an open, standards-based way?
 The Sunfish project, a collaboration between DMTF, SNIA, the OFA, and the CXL

Consortium exists to provide elements of the overall solution, with Redfish® and
SNIA Swordfish manageability providing the standards-based interface.
 Sunfish is designed to configure fabric interconnects and manage composable

disaggregated resources in dynamic High Performance Computing (HPC)
infrastructures using client-friendly abstractions.
 This presentation will highlight an open, standards-based approach to composable

resource management for disaggregated infrastructures through Sunfish.

6 | ©2024 SNIA. All Rights Reserved.

HPC Applications

 Integration with Flux as a job manager to allocate disaggregated
resources
 Will allow allocation of fast near-node storage appliances for future HPC

systems
 Could also allow similar integration of Fabric-Attached Memory (FAM)
 Looking to allocate AI/ML accelerators between HPC clusters using different

fabrics
 Allow users to get stats on how their code actually ran on the

hardware/fabric/accelerator

7 | ©2024 SNIA. All Rights Reserved.

The Sunfish Objective in Visual Form

Sunfish Services

Hardware
Specific
Agent

Users, Apps, utilities,
monitors, Resource
Managers or Admins

R
ES

Tf
ul

 A
PI

 (R
F/

SF
)

Hardware
Managers

Specific
HW

Sunfish Clients see
abstracted Fabric
Attached Resource
objects

Sunfish Services manages
the Redfish models of all
resources from multiple
hardware Agents

Sunfish Agents hide the
hardware specifics by
creating appropriate Redfish
models of resources

Sunfish defines the policies that Agents follow when creating resource models so
that Clients know how to interpret and manipulate them

8 | ©2024 SNIA. All Rights Reserved.

The Sunfish Open Fabric Management Framework

Sunfish Services

Composability
Layer

Swordfish
Agent

Ap
pl

ic
at

io
n

D
om

ai
n Fabric

Resources
Monitoring

Clients

Resource
Inventory

Management Layer Hardware Layer

Redfish / Native
API Translation

CXL
Agent

R
ES

Tf
ul

 A
PI

 (R
F/

SF
)

Data Store

Composition
Policies

Resource
Managers

(e.g.,
Compute,

FAM,
Storage,
Fabric)

RedFish
API

Vendor
Native APIAd

m
in

is
tra

tio
n

D
om

ai
n

Data
Store

RF tree
management

Infrastructure
management

Systems
composition,
Systems update

App driven
system
reconfiguration

Events &
Logs

Authentication

Access Control

Events & Logs
EventsEvents

Resource
Configuration

Fabric
Configuration

CXL Fabric
Manager(s)

Swordfish
Appliance
API Mgr

CXL
HW

CXL
HW

PCIe
HW

NVMe
HW

NVMe
HW

API API

PCIe
Agent

PCIe Fabric
Manager

9 | ©2024 SNIA. All Rights Reserved.

Sunfish Hardware Agents

Many different hardware
manufacturers can easily create
agents for Sunfish.
Sunfish is based on Redfish, so

agent creation is straightforward
for other Redfish-based
implementations.
Our alpha reference agent

emulator is available on Github
here:
https://github.com/OpenFabrics/s
unfish_agent_reference

https://github.com/OpenFabrics/sunfish_agent_reference/tree/rh-cxl-agent

10 | ©2024 SNIA. All Rights Reserved.

Sunfish Agents and Integration

11 | ©2024 SNIA. All Rights Reserved.

Swordfish Integration

 Sunfish will soon have a Swordfish
agent that registers with Sunfish
and uploads descriptors.
 The Swordfish Agent will manipulate

the resources, and will be a wrapper
around the existing Swordfish API
Emulator.
Our alpha Swordfish API Emulator

for Integration is here:
https://github.com/OpenFabrics/sunf
ish_agent_reference/tree/rh-cxl-
agent

https://github.com/OpenFabrics/sunfish_agent_reference/tree/rh-cxl-agent

12 | ©2024 SNIA. All Rights Reserved.

Merging Multiple Agent Resource Trees

Sunfish enables integration of heterogeneous fabrics with different
resource description frameworks.
 The two important problems to solve when working with multiple Agents:
 Sunfish must detect and resolve Redfish URI namespace conflicts
 Sunfish must detect and resolve Boundary Component duplicates

13 | ©2024 SNIA. All Rights Reserved.

A Simplified Redfish Model of CXL FAM Appliance

 The Enclosure Manager and/or its
Sunfish CXL Agent create a Redfish
model of the resources within the
Appliance

 This model is created within its own
Redfish URI namespace

 The Enclosure Manager/Agent
recognizes ONLY this URI namespace

 Multiple enclosures may all use the
same local URI naming conventions
 E.g., every instance of such an enclosure

may name its enclosure’s fabric
“/redfish/v1/Fabrics/CXL”

FAM
CXL

Switch
FAM
FAM
FAM

Enclosure Mgr

Ports

Fabrics
CXL

Switches

Chassis
CXL-

Chassis 1

Root

CXL1

Ports

endpoints

Fabric
Adapters1

1
U1 D1

T1

U2

14 | ©2024 SNIA. All Rights Reserved.

Managing Multiple Agents

 Sunfish Aggregates resources from multiple
hardware managers

 Hosts have BMCs and OS
 Storage and FAM Appliances have Enclosure

Managers
 Each of these hardware manager / Agent

stacks has their own management domain and
Redfish URI namespace

 In this topology, each CXL Enclosure is an
independent CXL Fabric
 No Switch-to-Switch links
 Single level switch topology

 Sunfish Service eliminates duplicate URIs that
may occur because the two Enclosure
Managers may both use the same Redfish
URIs

 Sunfish Service also needs to merge the
Redfish URI namespaces of the System Agent
and the two CXL Agents

 Dotted links are Boundary Links that cross
hardware manager domains
 E.g. links between a Host and an enclosure

switch

SSD
CXL

Switch

BMC SSD
SSD
SSD

FAM

CXL
Switch

FAM
FAM
FAM

Host
1

Host
2

Enclosure Mgr 2

Enclosure Mgr 1

OS

BMC

OS

Sunfish

System Agent CXL Agent 2 CXL Agent 1

15 | ©2024 SNIA. All Rights Reserved.

A Merged Redfish Model of 2 Fabric Appliances

 Merging multiple Redfish URI
namespaces is relatively easy if
the actual hardware / logical
instances are independent

 Sunfish keeps track of all URIs it
translates from a given Agent’s
URI namespace to the URI used
in the Sunfish URI namespace

 Sunfish must validate that the
Fabrics and Chassis involved are
completely independent

 Every physical device on every
fabric needs to have a hardware
ID that is unique within the scope
of the Sunfish Services

 Sunfish keeps a list of all
hardware IDs and searches for
duplicates as each new resource
is inserted into the database

FAM
CXL

Switch
FAM
FAM
FAM

Enclosure Mgr 2

Ports

Switches

CXL1

Ports

endpoints

Fabric
Adapters1

1
U1 D1

T1

U2

I1
I2

SSD
CXL

Switch
SSD
SSD
SSD

Enclosure Mgr 1

Ports

Fabrics
CXL1

Switches

Chassis
CXL-

Chassis 1

Root

CXL1

Ports

endpoints

Fabric
Adapters1

1
U1 D1

T1

U2

I1
I2

CXL2

CXL-
Chassis 2

16 | ©2024 SNIA. All Rights Reserved.

Storage Capabilities in Progress

Management of NVMe native devices along with NVMe appliances through
Sunfish’s Swordfish Agent
 Aggregation of multiple Swordfish targets
 Adaptation of SNIA Swordfish compliance testing
Our video tutorial is coming soon here: https://www.openfabrics.org/snia-and-

the-ofmf/

Swordfish
Agent

Swordfish
Appliance
API Mgr

NVMe
HW

NVMe
HW

https://www.openfabrics.org/snia-and-the-ofmf/

17 | ©2024 SNIA. All Rights Reserved.

Sunfish Status

New Releases Planned
 Customization plugin
 Redis storage backend

Soliciting new use cases and hardware
 Started working on the Flux client side

Working on client-side resource blocks and resource managers
Creating a reference CXL Agent

18 | ©2024 SNIA. All Rights Reserved.

Find us at SC!

We will be holding a Sunfish BoF at SC this year:
 Tentatively scheduled for Thu Nov 21, 12:15pm-1:15pm in Room B214

We will be at the Open Standards Pavilion (Booth 1815)

https://hallerickson.ungerboeck.com/prod/app85.cshtml?aat=336f31422f357077586f44585a42586135774b4c3831752f386373426d35584b745a5a507a4955797236633d&ExhibitorID=7657

19 | ©2024 SNIA. All Rights Reserved.

Summary

Sunfish allows allocating multiple different Redfish-derived hardware
agents from different vendors in the same Sunfish instance.
Sunfish can also merge different fabrics via its service layer.
Sunfish is currently targeting Kubernetes via several operators and the

Flux scheduling framework for HPC.
We will have a BoF and several demos during SC.

20 | ©2024 SNIA. All Rights Reserved.

Questions?

Read the docs here!
https://github.com/Open

Fabrics/sunfish_docs

Join our development here!
https://www.openfabrics.org
/openfabrics-management-

framework/

https://github.com/OpenFabrics/sunfish_docs
https://www.openfabrics.org/openfabrics-management-framework/

21 | ©2024 SNIA. All Rights Reserved.

Backup Slides

22 | ©2024 SNIA. All Rights Reserved.

Demo

SSD
Ether

Switch

BMC SSD
SSD
SSD

FAM

CXL
Switch

FAM
FAM
FAM

Host
1

Host
2

Enclosure Mgr 2

Enclosure Mgr 1

OS

BMC

OS

Sunfish

System Agent CXL Agent EBOF Agent

23 | ©2024 SNIA. All Rights Reserved.

A Simplified Redfish Model of Multiple CXL Appliances

 What if we have two of these
enclosures?

 We have two Redfish roots,
with two possibly conflicting
URI namespaces.

 Sunfish Framework defines
how to handle this

FAM
CXL

Switch
FAM
FAM
FAM

Enclosure Mgr 2

Ports

Fabrics
CXL

Switches

Chassis
CXL-

Chassis 1

Root

CXL1

Ports

endpoints

Fabric
Adapters1

1
U1 D1

T1

U2

I1
I2

SSD
CXL

Switch
SSD
SSD
SSD

Enclosure Mgr 1

Ports

Fabrics
CXL

Switches

Chassis
CXL-

Chassis 1

Root

CXL1

Ports

endpoints

Drives1

1
U1 D1

T1

U2

I1
I2

24 | ©2024 SNIA. All Rights Reserved.

Managing CXL Boundary Components

Chassis
Chassis

1

Root

Fabrics
CXL1

Switches

CXL1

Ports

Switches
2

Port
s

1 4

7

Chassis
Chassis

CXL1

Root

Fabrics
CXL5

Switches
Unk1

Ports

Switches
B

Ports1
4

8

7

7

CXL Fabric Manager View Enclosure Manager ViewBoundaryComponent =
[Foreign] BoundaryComponent =

[Owned]

BoundaryComponent =
[Owned]

CXL Fabric Links:
Port #’s and LinkPartnerIDs are known to

BOTH ends of Boundary Links

BoundaryComponent =
[Foreign]

Both Managers
Report the same Device ID

25 | ©2024 SNIA. All Rights Reserved.

Managing CXL Boundary Components

Chassis
Chassis

1

Root

Fabrics
CXL1

Switches

CXL1

Ports
1 8

Switches
1

Port
s

1

2

2

2

Port
s

1 4

97 6

Chassis
Chassis

CXL1

Root

Fabrics
CXL5

Switches
Unk1

Ports
8

Switches
A

Port
s1
2

8

B

Port
s

1
4

8

6

7

97 6

CXL Fabric Manager View Enclosure Manager View

BoundaryComponent =
[Foreign]

BoundaryComponent =
[Owned]

BoundaryComponent =
[Owned]

CXL Fabric Links:
Port #’s and LinkPartnerIDs are known to

BOTH ends of Boundary Links

BoundaryComponent =
[Foreign]

Both Managers
Report the same Device ID

26 | ©2024 SNIA. All Rights Reserved.

Merging Multiple Agent Resource Trees

Ports

Ports

1

Systems

CPUs

1

Fabrics
CXL

Switches
CXL1

Chassis
Chassis

1

Root

Memory
Domains Memory

2

CXL2

Ports

Ports

Connections

endpoints

I3

1 2

2

Fabric
Adapters2

Memory
Chunks1

1

CXL_
System2

CXL_
System3

U3

F1

F2

F4

F1

F2

F4

D2

25

CXL
fabric

T2

Zones
1

27 | ©2024 SNIA. All Rights Reserved.

Merging Multiple Agent Resource Trees

Systems

CPUs

1

Fabrics
CXL

Chassis
Chassis

1

Root

Memory
Domains Memory

2
Connections

endpoints

I3

2

Fabric
Adapters2

Memory
Chunks1

CXL_
System3

25

T2

Zones
1

	OFA Sunfish
	Agenda
	Sunfish Overview
	Composable Disaggregated Infrastructure (CDI)
	Sunfish
	HPC Applications
	The Sunfish Objective in Visual Form
	The Sunfish Open Fabric Management Framework
	Sunfish Hardware Agents
	Sunfish Agents and Integration
	Swordfish Integration
	Merging Multiple Agent Resource Trees
	A Simplified Redfish Model of CXL FAM Appliance
	Managing Multiple Agents
	A Merged Redfish Model of 2 Fabric Appliances
	Storage Capabilities in Progress
	Sunfish Status
	Find us at SC!
	Summary
	Questions?
	Backup Slides
	Demo
	A Simplified Redfish Model of Multiple CXL Appliances
	Managing CXL Boundary Components
	Managing CXL Boundary Components
	Merging Multiple Agent Resource Trees
	Merging Multiple Agent Resource Trees

