

September 16-18, 2024 Santa Clara, CA

Fibre Channel Gen8 Update

28GFC, Fabric Notifications, and Managing NVMe NQNs

Howard L. Johnson, chair INCITS/Fibre Channel TC

The SNIA Community

Agenda

- Thank you for participating
 - SNIA Storage Developer Conference 2024!
- Fibre Channel Gen 8
 - The path to 128GFC
- Fabric Notifications
 - An ecosystem-wide resiliency feature

Managing NQNs

NVMe Qualified Names for use in SANs

Summary

- All this and more!
- A peak into the future ⁽³⁾

How the Fibre Channel industry innovates

4 | ©2024 SNIA. All Rights Reserved.

*InterNational Committee for Information Technology Standards

Gen 8 Fibre Channel

128GFC

5 | ©2024 SNIA. All Rights Reserved.

Fibre Channel Speeds

Product Naming	Throughput (Mbytes/s)*	Line Rate (Gbaud)	T11 Specification Technically Complete (Year) [†]	Market Availability (Year) †
8GFC	1,600	8.5 NRZ	2006	2008
16GFC	3,200	14.025 NRZ	2009	2011
32GFC	6,400	28.05 NRZ	2013	2016
64GFC	12,800	28.9 PAM-4	2017	2020
128GFC	24,850	56.1 PAM-4	2022	2024
256GFC	49,700	112.2 PAM-4	2025	Market Demand
512GFC	TBD	TBD	2029	Market Demand
1TFC	TBD	TBD	2033	Market Demand

"FC" used throughout all applications for Fibre Channel infrastructure and devices, including edge and ISL interconnects. Each speed maintains backward compatibility at least two previous generations (I.e., 32GFC backward compatible to 16GFC and 8GFC)

*These numbers are representative throughput values for the line rate and are payload dependent

† Dates: Future dates estimated

Fibre Channel 128GFC Requirements

- Throughput
 - 128GFC doubles the throughput of 64GFC
- Error correction
 - Corrected bit-error-rate (BER) target of 1e-15
- Compatibility
 - 128GFC had to be backward compatible to 64GFC and 32GFC
 - Backward compatibility and "plug and play" to utilize existing infrastructure with new speeds is always a "must have" for FC development
- Distance
 - 100 meters
 - Multi-mode short reach optical variant using OM4/OM5 cable plants
 - 10 kilometers
 - Single mode optical variant
- Reuse existing cable assemblies
 - Must plug into 128GFC capable products
 - LC (connector) and SFP+ (form factor)

128GFC Modulation

Modulation

- Refers to the signal levels that are on the "wire" (physical interface) whether optical or electrical
- For 64GFC studies by the Fibre Channel committee and other committees determined that moving to PAM4 modulation would be "easier" from a component and IP perspective than staying with the NRZ/PAM2 modulation and doubling the "wire" rate to 57.8Gb

64GFC and 128GFC use PAM4

- 128GFC uses PAM4 modulation and is 112.2Gbps (56.1Gb)
- 64GFC also uses PAM4 modulation and is 57.8Gbps (28.9Gb)
- All lower FC speeds use PAM2 (NRZ)
 - 32GFC has a NRZ/PAM2 line rate of 28.05Gb

As serial data rates surpass 32Gb/s per channel, signal impairments caused by increasing bandwidth necessitate the high-speed serial data technology to shift from simple NRZ (non-return to zero PAM2) signal modulation to the bandwidth efficient PAM4 (4-level pulse amplitude modulation).

128GFC Forward Error Correction

- Forward Error Correction (FEC) is mandatory for all types of 128GFC links
- How it works
 - The transmitter encodes the data stream in a redundant way using an error correcting code

128GFC uses a Reed Solomon block code

- The code used for 128GFC is RS(544,514)
 - Allows correction of single bit errors or burst errors for 15 ten bit symbols out of 5140 bits sent

FEC has been used in previous FC variants

- 64GFC FEC uses RS(544,514)
- 32GFC FEC uses RS(528,514)
- I6GFC FEC uses (2112,2080) and is optional

128GFC Speed Negotiation

Fibre Channel link bring up phases

- Link Speed Negotiation -> Optical Module bring-up -> Transmitter Training -> Mission Mode
- Fibre Channel devices typically support three speeds (e.g. 32/64/128)

Link Speed Negotiation (LSN)

- Baud rate 32G (28.05Gb) NRZ
- Advertise supported speeds in Extended Marker (32G, 64G, 128G)
- See IEEE Clause 72 Training Signal
 - Exchanged between link partners uses Differential Manchester Encoding (DME), which runs at a lower signaling rate
 - High probability of error free exchange

Training Signal negotiates capabilities between transmitter and receiver

- 128G FEC type
 - FEC transmission mode (interleaved vs single, symbol forward vs bit interleave)
- Speed Negotiation (SN) field
 - 0 = LSN finished
 - 1 = LSN in progress

128GFC Milestones

FC-PI-8

- 128 GFC single lane specification
- INCITS Fibre Channel/T11 complete October 2022
- ANSI accepted October 2023

FC-FS-6

- 128 GFC single lane framing and signaling specification
- INCITS Fibre Channel/T11 complete October 2023
- ANSI accepted June 2024

FC-PI-9 project

- 256 GFC single lane specification
- INCITS Fibre Channel/T11 TC work started December 2022

Gen 8 Fibre Channel

Fabric Notifications

13 | ©2024 SNIA. All Rights Reserved.

The Problem

Persistent, intermittent errors

- Significant role in customer escalations
- Difficult for traditional solutions to resolve
- Required manual intervention increases mitigation costs
- MPIO solutions struggle with resolution, which impacts the dual fabric paradigm

Causes

- Marginal cables, SFPs, connections, etc
- Congestion due to lost credit, credit stall, or oversubscription

Why now?

- Fibre Channel solutions are mature and diversified
- Identification and mitigation tools have evolved
- Customers are demanding more automation

The Solution

Fabric Notifications

- Notifications and signals
 - Generated by the fabric
 - Inform devices of impairments

Notifications

- Reporting: Events sent to registered devices
- Diagnostics: Helps efficiently evaluate errors
- Operation: Extended Link Services (ELS)

Signals

- Signaling: Report resource depletion to registered devices
- Diagnostics: Transmitter indicates resource usage
- Operation: Link level Primitive Signal

Fibre Channel Standards

Standards History

- Began in December 2018
- Fully specified in April 2022
- Standards complete in June 2024

Initial introduction into draft standards

- FC-FS-6: Congestion Signals (r0.3)
 - ANSI Standard
- FC-LS-5: Notifications (r5.01)
 - INCITS final draft
- FC-SW-8: Fabric detection and generation (r1.01)
 - INCITS final draft

Fabric Notifications

Software-based FPIN

- Extended Link Services commands
- Fabric Performance Impact Notification (FPIN)

Hardware-based Congestion Signal primitives

- Defined as Primitive Signal characters
- Warning and Alarm Signals

Fabric Notifications

Link Integrity Notifications

- Link Integrity notifications are received by MPIO drivers, which update the path selection to avoid the impaired path
- The Link Integrity notifications allow the MPIO driver to take the appropriate action for errors (e.g., CRC, ITW)

Congestion and Peer Congestion Notifications

- Congestion notifications are the software equivalent of the Congestion Signal and are sent to congesting end devices
- Peer congestion notifications are sent to registered and "in-zone" peers of end devices that are experiencing congestion

SCSI Command Delivery Notifications

 Delivery notifications are sent when a fabric discards a SCSI command or status frame to notify the initiator of the failure

18 | ©2024 SNIA. All Rights Reserved.

Fabric Notifications

- Congestion Signals
 - Immediate feedback mechanism
 - Indicates transmission resources are consumed
- Link level communication
 - Transmitter to receiver

Gen 8 Fibre Channel

Managing NQNs (NVMe Qualified Names)

The Problem

Summary

- Fibre Channel devices reference World Wide Port Names (WWPN)
- NVMe devices reference NVMe Qualified Names (NQNs)
- Both must be configure correctly for FC-NVMe solutions to function

Example

- NVMe Storage define access control using the host NQNs
- NVMe Hosts "connect" to specific storage Sub-NQNs to access Namespaces
- FC-NVMe requires both WWPNs (zoning) and NQNs to be configured correctly

Challenge

- SAN administrators access/view WWPNs from Fabric management tools
- However, the NQNs at the NVMe layer are not visible to the Fibre Channel Fabric

Figure 1 – NVMeoFC protocol layers

The conundrum – NQNs and FC-NVMe

Connection requirements

- NVMe connection requirements (parameters)
 - CONNECT(HOSTID, CNTLID, SUBNQN, HOSTNQN)
- Fabric Physical layer (Fibre Channel)
 - ZONE(WWN0, ..., WWNn)

NQNs are opaque data to FC-NVMe

- Provided by the ULP (NVMeoF)
- Used in Create Association NVMe_LS (FC-NVMe)
 - Validated for consistency, not for authenticity
 - See FC-NVMe clause 4.4.1

NVMe connections require "both"

- NVMeoF and Fabric Physical layer connectivity parameters are independent of each other
- WWNs for zoning and NQNs for connection requests
 - If either is incorrect, IO is not possible

The Solution

Management server

- Maintains NQNs as ULP Name objects
 - Creates associations between WWPN and accessible NQNs
- Fibre Channel devices register and query for ULP Names

FC-GS-9

- Upper Layer Protocol (ULP) Name object
- Upper Layer Object Server
 - Registration/deregistration
 - Query

FC-NVMe-3

 NVMe_Port registration of the NQNs associated with the NVMe_Port

Table 524 – ULP Name object

Item	Size (bytes)
FC-4 TYPE Code	1
ULP Name Type	1
Reserved	1
ULP Name Length	1
ULP Name	n

Table 10 – ULP Name Type field for FC_NVMe

Value	ULP Name Type		
0	Not specified		
1	NVM Subsystem NQN		
2	Host NQN		
3	Discovery Service NQN		
4 to 255	Reserved		

Gen 8 Fibre Channel

Miscellaneous Fun Stuff

24 | ©2024 SNIA. All Rights Reserved.

Revving up for Fibre Channel 256GFC

Throughput

• 256GFC doubles the throughput of 128GFC

Error correction

• Corrected bit-error-rate (BER) target of **1e-15**

Compatibility

256GFC backward compatibility with 128GFC and 64GFC

Distance

- 100 meters (watch this space)
 - Multi-mode short reach optical variant using OM4/OM5 cable plants
- 10 kilometers
 - Single mode optical variant
- Reuse existing cable assemblies
 - Must plug into 256GFC capable products
 - LC (connector) and SFP+ (form factor)
- FC-PI-9 project is underway!

Fibre Channel Automation

Platform Name_Identifier

- WWN for the enclosure
- Establishes Port->Node->Platform hierarchy

Port Notifications

- Extension of Fabric Notifications
- Supports Port Decommission/Recommission
- Virtual Machine Identification
 - VM attributes for VE and ULP servers

About the Fibre Channel Industry Association (FCIA)

25+ Years^{*} Promoting Fibre

Channel Technology

Industry Leading

Member Companies

142M+ FC Ports

Shipped Since 2001

Working in cooperation with the Storage Networking Industry Association (<u>SNIA</u>) to promote <u>storage solutions</u>!

- Thank you for attending SNIA Storage Developer Conference 2024!
- Fibre Channel speed
 - The path to 128GFC
- Fibre Channel reliability
 - An ecosystem-wide resiliency feature
- Fibre Channel flexibility
 - NVMe Qualified Names for use in SANs
- Fibre Channel future
 - Gen 9 and 256GFC
 - Security for the CNSA 2.0 world
 - Integration and automation

Call to Action

Demand stability, reliability, speed, and flexibility from your Storage Area Networking environment – demand Fibre Channel! ©

howard.johnson@broadcom.com

Thank You!

Fibre Channel Gen 8 Update 128GFC, Fabric Notifications, and Managing NQNs

Please take a moment to rate this session.

Your feedback is important to us.

References

Fibre Channel Gen 8 Update 128GFC, Fabric Notifications, and Managing NQNs

FCIA BrightTalk Channel

- Highlighted
 - "128GFC: A Preview of the New Fibre Channel Speed" (<u>BrightTalk</u>)
 - "Fibre Channel Data Center Interconnects (DCI): 64G FC and More" (BrightTalk)
 - "NVMe over FC: Deep Dive in Protocol, Architecture and Use Cases" (BrightTalk)
 - "Introducing Fabric Notifications, From Awareness to Action" (<u>BrightTalk</u>)

Of Interest

- "Inside a Modern Fibre Channel Architecture" (BrightTalk Part 1 & Part 2)
- "Advance Your Career with Fibre Channel Knowledge" (<u>BrightTalk</u>)

Fibre Channel Gen 8 Standards References

- Fibre Channel 128GFC
 - FC-FS-6 (ANSI) (INCITS 562-2024)
 - FC-PI-8 (<u>ANSI</u>) (<u>INCITS 560-2023</u>)
- Fibre Channel Fabric Notifications
 - FC-LS-5 (<u>INCITS</u>) (<u>INCITS 569-2024</u>)
 - FC-SW-8 (INCITS) (INCITS 568-2024)
- Fibre Channel NQNs
 - FC-GS-9 (INCITS) (INCITS 570-2024)
 - FC-LS-5 (<u>INCITS</u>) (<u>INCITS 569-2024</u>)

Fabric Notifications Solutions

Fabrics and Storage

- Fabrics
 - Brocade
 - FOS 9.0.0, FOS 9.2.1
 - Cisco
 - NX-OS 9.2(1), NX-OS 9.4(2a)
 - Emulex
 - LPe3100x, LPe3200x, LPe3500x-M2
 - Marvell
 - QLE269x, QLE274x, QLE277x, QLE28xx
- Storage
 - Dell
 - PowerMax InfoScale 10.1
 - NetApp
 - OnTap 9.10
 - PureStorage
 - Oxygen

Multipath solutions

- Operating systems
 - IBM AIX
 - 7.2 TL5, 7.3 TL2
 - Redhat
 - RHEL 8.3 / EPEL 8, RHEL 9.0 / RHEL 8.7, RHEL 9.2 / RHEL 8.8, RHEL 9.3 / RHEL 8.9, RHEL9.4 / RHEL 8.10
 - SuSE
 - SLES15 SP4, SLES 15 SP5, SLES 15 SP6
 - Vmware
 - ESXi 8.0, ESXi 8.0U1, ESXi 8.0U2
- Multipath software
 - Dell
 - PowerPath 7.4
 - Veritas
 - InfoScale 8.0.2 DMP

Fabric Notifications References

Webinars

- "Introducing Fabric Notifications, From Awareness to Action" (FCIA BrightTalk presentation)
 - <u>SNIA SDC 2021 EMEA</u> virtual session (<u>Part One</u> and <u>Part</u> <u>Two</u>)
 - <u>SNIA SDC 2021</u> virtual session (<u>Presentation</u>)
- "Fabric Notifications An Update from Awareness to Action"
 - <u>SNIA SDC 2022</u> live session (<u>Presentation</u>)
- "The Evolution of Congestion Management in Fibre Channel"
 - SNIA BrightTalk webinare (<u>Presentation</u>)
- Industry
 - IBM Power Community <u>AIX Support for Fabric</u> <u>Congestion Notification</u>
 - PureStorage <u>blog</u>
 - Marvell SAN congestion mitigation <u>Video</u>

Articles

- The Autonomous SAN (FCIA Solutions guide)
- Fabric Notifications Technical Brief (<u>Brocade</u> <u>Whitepaper</u>)
- MPIO Load Balancing Recommendations (<u>Brocade</u> <u>Whitepaper</u>)
- Cisco Fabric Notifications <u>Blog</u>
- Dell Fabric Notifications <u>Technical Brief</u>
- Emulex Fabric Notifications Product Brief
- Videos
 - Fabric Notifications Primer (<u>Brocade video</u>)
 - Fabric Notifications using RHEL 8.3 (<u>Brocade video</u>)
 - Fabric Notifications using IBM AIX 7.2 TL5 (<u>Brocade</u> video)

Fibre Channel Signaling – Rate Abbreviations

Abbreviation	Signaling rate	Number of Lanes	Data rate
1GFC	1.0625 MBd	1 (NRZ)	100 MB/s
2GFC	2.125 MBd	1 (NRZ)	200 MB/s
4GFC	4.250 MBd	1 (NRZ)	400 MB/s
8GFC	8.500 MBd	1 (NRZ)	800 MB/s
16GFC	14.025 MBd	1 (NRZ)	1600 MB/s
32GFC	28.050 MBd	1 (NRZ)	3200 MB/s
64GFC	28.900 MBd	1 (PAM4)	6400 MB/s
128GFC	56.1 MBd	1 (PAM4)	12425 MB/s
256GFC	112.200 MBd	1 (PAM4)	24850 MB/s

EOF That's All Folks!

37 | ©2024 SNIA. All Rights Reserved.