
SMB and NFS compared

SDC 2024
Santa Clara

Volker Lendecke

SerNet / Samba Team

2024-09-16



Access paths to file systems

▶ Posix, NFS and SMB all give access to directories and files

▶ All three worlds serve different requirements with different historic
backgrounds.

▶ Posix access goes through a local syscall interface
▶ When the “server” (i.e. the kernel) dies, all clients are gone
▶ When the “client” (i.e. a process) dies, the kernel immediately knows
▶ Client ↔ Server latency exists, but is extremely low

▶ NFS and SMB should not trip over the Fallacies of Distributed
Computing (see wikipedia)
▶ Everything between client and server is slow, either side and everything

in between can fail or even lie.

Volker Lendecke SMB and NFS (2 / 17)



Interoperability

▶ NFS serves Posix, SMB is for Windows, S3 is – well, S3.

▶ Different access paths to the same file system must coordinate

▶ Exposing protocol semantics in isolation is a problem solved pretty
well in both the FOSS as well as in the proprietary worlds

▶ Cross-Protocol semantics to my knowledge have never been
addressed, at least not in “my bubble”, the FOSS world around
Samba

Volker Lendecke SMB and NFS (3 / 17)



How hard can it be?

▶ Why is it so hard?
▶ Posix has its subtleties (for example how to properly fsync or how to

deal with deleted files), but basic semantics are well-known to Linux
developers

▶ Both SMB and NFS are complex protocols with decades of history
▶ Implementing either protocol is too much for a single developer, so

understanding and implementing more than one takes teams separate
from each other.

▶ Why has this never been solved?
▶ From a Samba perspective, nobody cared enough

▶ Windows users expect faithful semantics, the CEO’s laptop must work

▶ NFS users live with quirks forever, so semantic coherence seems not to
be seen as a business opportunity

Volker Lendecke SMB and NFS (4 / 17)



Areas of difference

▶ Security
▶ NFS is usually machine-based, SMB sessions are per user
▶ ACLs

▶ File name semantics
▶ Case sensitive vs insensitive, special file names/characters

▶ File and directory metadata
▶ Time stamps, xattrs, alternate data streams

▶ Request replay
▶ Locking

▶ Share modes/reservations, byte range locks

▶ Client caching
▶ Leases vs delegations

Volker Lendecke SMB and NFS (5 / 17)



Security

▶ SMB had password protection of shares since 1980s

▶ With LANMAN 1.0 user login was added to the protocol, since then
all SMB traffic is per user (machines can also be “users”)

▶ The scope of a security context is the transport connection

▶ NFS relies on the underlying ONC-RPC for security

▶ NFSv4.0 introduced GSSAPI as a requirement
▶ Scope of a security context in NFS is the individual request

▶ NFS allows different RPC security settings per directory/file

▶ NFS protects locking state (open/share/delegation/brlock) separately
from any other authentication on the transport

▶ A lot of NFS deployments run without any security

Volker Lendecke SMB and NFS (6 / 17)



ACLs

▶ SMB has ACLs defined by the Windows security model and NTFS
▶ Principals are Security Identifies
▶ SIDs don’t have a type such as user/group/machine etc.
▶ 13 bits granting or denying specific types of access

▶ NFSv3 deals with permission bits (RWXRWXRWX)
▶ NFSv4 adds the 13 bits from the Windows doc plus 2 more

(WRITE RETENTION, WRITE RETENTION HOLD)
▶ NFSv4.1 adds ACL inheritance flags
▶ Deny ACEs and system acls supported
▶ ACCESS request can only query 6 of the 15 bits (why??)
▶ ACE principals are full UTF-8 strings
▶ user@domain recommended, numeric string possible, no real mandatory

standard

Volker Lendecke SMB and NFS (7 / 17)



chown / chmod

▶ Posix stat information has permissions, owner and owning group as
independent entities

▶ NFSv3 and v4 implement exactly this model
▶ “owner” and “owner group” are separate attributes
▶ “mode” represents the permission bits
▶ ACL implementation adds OWNER@, GROUP@ and EVERYONE@

entries
▶ RFC8881 (NFSv4.1) section 6.4 handling both mode bits and acls

pretty open
▶ chmod MUST change the ACL, setfacl MUST change the mode
▶ chown makes OWNER@ ACE to someone else

▶ SMB ACLs don’t have OWNER@ and GROUP@
▶ What to do with chown and chmod
▶ Introduce OWNER@/GROUP@/EVERYONE@ special SIDs for interop?

Volker Lendecke SMB and NFS (8 / 17)



File and directory metadata

▶ Not much significant difference

▶ SMB has infolevels, NFS can query individual attributes

▶ Both have the typical time stamps, file size, etc

▶ Named extended attributes in both NFS and SMB

▶ SMB uses the : character for named streams
▶ NFS the OPENATTR - Open Named Attribute Directory

▶ You read that right, NFS has alternate data streams!

Volker Lendecke SMB and NFS (9 / 17)



SMB Request replay

▶ SMB runs over reliable transport

▶ Before SMB2 multichannel, there was one TCP connection per client
and server machines: Replay of requests not an issue

▶ SMB2 Multichannel widens the transport to multiple connections
▶ More performance, prerequisite for SMB over RDMA
▶ “Plan B” for network disconnects

▶ Multichannel enables resending requests over a different connection

▶ Channel Sequence Number incremented on disconnects to indicate,
Client indicates replay with a bit in the SMB2 header

▶ CreateFile has a CreateGUID to identify requests re-sent

▶ Locking calls detect replay with lock sequence numbers

Volker Lendecke SMB and NFS (10 / 17)



NFS request replay

▶ UDP used to be a valid transport for NFS
▶ The ONC RPC Duplicate Request Cache is based on an opaque

32-bit XID (request ID)
▶ Correct identification of clients is problematic
▶ No mechanism to correctly throw away cache entries

▶ NFSv4.1 introduces proper DRC handling
▶ CREATE SESSION allocates an array of request slots on the server,

holding sequence numbers.
▶ Client chooses a slot number per RPC, sends its view of sequence

number
▶ Server validates sequence number increments, throws away cache

entries when client sends sequence number incremented by one

Volker Lendecke SMB and NFS (11 / 17)



Share Modes / Share Reservations

▶ SMB from the beginning was a stateful protocol

▶ Files have to be opened before use, locking was always possible

▶ For single-tasking MS-DOS compat reasons, per-open locks (share
modes) protected client applications from each other

▶ NFS before v4 was designed as stateless

▶ Locking was done in external protocols, recovery from failures is still
an area of concern

▶ NFSv4 identifies clients and servers and adds state to the protocol

▶ Recovery from client failure via leases, meaning regular client pings

▶ NFSv4 introduces share reservations to accomodate Win32 clients
▶ FILE SHARE READ and WRITE are available, DELETE is not

▶ FILE SHARE DELETE is a lock on the name: Must be done at the
directory layer

Volker Lendecke SMB and NFS (12 / 17)



Byte Range Locks

▶ NFS models Posix, SMB models NTFS

▶ Overlapping locks handled differently from SMB

▶ Advisory and mandatory possible

▶ NFS READ can ask to override any mandatory locks

Volker Lendecke SMB and NFS (13 / 17)



Locking state management

▶ In SMB, all locking state is tied to a file handle
▶ Share modes and byte range logs are dropped when the file handle is

closed
▶ Durable & higher handles make locking state survive
▶ One operation to potentially wipe all locking state

▶ NFS has a separate names space for “open owner” and “lock owner”
entities

▶ No clear file handle similar to a Posix FD exists

▶ Clients can implement their own “open/lock/delegation owner” name
spaces independent of particular client processes or users

▶ Still unclear how exactly map those two concepts in a central
server-side locking infrastructure

Volker Lendecke SMB and NFS (14 / 17)



Client caching

▶ SMB1 allowed clients to cache via oplocks
▶ Permission to handle requests locally per file handle
▶ Oplocks can be broken, but not in-place upgraded

▶ SMB2 introduced leases
▶ Separate key space that can be broken and upgraded while the files are

kept open

▶ SMB2 allows to cache directory contents with directory leases
▶ NFSv4 has a similar concept with file delegations

▶ Write delegations allow almost everything being cached on the client

▶ NFSv4.1 adds directory delegations, also allowing file change notify

Volker Lendecke SMB and NFS (15 / 17)



How to cooperate

▶ Practial areas of concern: Idmapping and ACLs
▶ These topics are ancient and don’t go away

▶ Identities: Windows has AD and SIDs, Unix has 32-bit IDs
▶ SIDs don’t have a type (user/group/whatever) and can be used

everywhere, they are unique worldwide
▶ Unix IDs are just numbers, but their use (chown/chgrp) specifies the

type, they overlap everywhere

▶ ACLs: Everybody has to implement their own
▶ Relatively recent example: Amazon S3 with ACLs and then bucket

policies
▶ Microsoft extended ACLs with conditions (Can you put bucket policies

there?)

▶ Who needs to talk to each other?
▶ Kernel: ksmbd and knfsd people
▶ User space: Samba and Ganesha
▶ Testers/documenters: Define the expected behaviour

Volker Lendecke SMB and NFS (16 / 17)



Thanks for your attention

You have to implement an NFS server to understand the RFC

Join the BoF Tue 8pm Cypress

vl@samba.org / vl@sernet.de
https://www.sernet.de/
https://www.samba.org/

Volker Lendecke SMB and NFS (17 / 17)


