
1 | ©2024 SNIA. All Rights Reserved.

September 16-18, 2024
Santa Clara, CA

Host Addressable SLM
NVMe and CXL Collaborating

Bill Martin and Jason Molgaard

2 | ©2024 SNIA. All Rights Reserved.

Speakers

Jason Molgaard Bill Martin

3 | ©2024 SNIA. All Rights Reserved.

Agenda

• NVMe® TP4184 Host Addressable SLM
• Computational Storage: A Use for Host Addressable SLM
• Combining NVMe® and CXL® Technologies
• Use Cases

4 | ©2024 SNIA. All Rights Reserved.

NVMe® TP4184
Host Addressable SLM

5 | ©2024 SNIA. All Rights Reserved.

Why Provide Host Addressable SLM?

• NVMe devices currently provide host accessible memory in the form of
SLM
• Accessing this memory via a memory protocol will

• Be more efficient
• Allow cache coherency of that memory
• Allow peer-to-peer communication using a memory model
• Eliminate a context switch

• Computational Storage Use
• Computational Storage Drives have more host accessible memory than a traditional

Storage Device
• Benefits from peer-to-peer communication (more on this later)

• Why not CMB/PMR?
• No mechanism to specify a location in CMB/PMR to the device

6 | ©2024 SNIA. All Rights Reserved.

Host Addressable SLM – NVMe® TP4184

• NVMe TP4184 is in the Architecture Definition phase
• SLM is addressed at a Host Physical Address (HPA)

• PCIe BAR; or
• CXL HDM

• SLM memory can have a virtual mapping for host applications
• Host application does not have to switch contexts for SLM memory access

• SLM memory is accessible by the host and the device
• SLM can be read/written with:

• Host Load/Store commands
• CXL.mem commands

• Compute is triggered with Computational Programs commands
• Utilizes the host addressable SLM

• Allows P2P data movement based upon HPA
• SLM is still accessible using the SLM Command Set Memory Read and Memory Write

commands

7 | ©2024 SNIA. All Rights Reserved.

Potential Config Flow for CXL® SLM
• NVMe device with CXL SLM is similar to a CXL Type 2

device
• Plan for a CXL Type 2 device is for the OS to do standard

PCIe configuration (e.g. allocating BAR space) and then
load driver CXL configuration using device’s PCI ID

• NVMe device with CXL SLM will use an enhanced NVMe
driver

• Enhanced for CXL based SLM configuration
• Device will use existing NVMe Class Code and may use a new

Programming Interface (PI) identifier to expose CXL
capabilities

• Device driver discovers device capabilities and calls OS CXL
core services for CXL Memory set up

• CXL core services offers kernel interfaces for the driver to set
up required CXL capabilities such as HDM decoders and
return necessary information (e.g. HPA range)

• Device CXL memory allocation is controlled by the NVMe driver
• Linux support for CXL Type 2 devices is not yet available

• Driver owns runtime management of Device CXL memory

• Host does PCIe device
discovery/configuration

• Sets Device BAR space
• Load device driver

• Device driver performs
standard NVMe config

• Discovers SLM NS support

CXL SLM?

Yes

No

• Device driver requests CXL
Memory set up using Kernel
Interfaces

Kernel CXL Core Services

• Discovers CXL
capabilities

• Sets up HDM decoders
for device memory to
HPA

• Returns HDM decoder
maps and memory
properties to Device
driver

Continue

Dev Info,
Memory Size

HPA Info,
 properties

Per-Port High-Level Config Flow

• Device Driver sets up
HPA<->SLM NS

8 | ©2024 SNIA. All Rights Reserved.

Host – CXL® SLM Address Mapping

Notes:
• One HDM Decoder can map to 1 or more

SLM namespaces with the same access
characteristics (coherency, UIO etc.)

• SLM namespaces requiring different
access characteristics must use different
HDM decoders

NSID 1: CXL SLM

NSID 3: SLM I/O

HPA Base Size

HDM Decoders
(per NVMe Controller) NSID= 1 Offset

SLM NVMe I/O Access method

Device SLM Address Space
Programmed by
Host CXL core driver

App Allocated Range
In SLM NSID =1

App
Host CPU
Address
Translation

CXL.Mem Load/Store access method

CXL SLM VA
Access

NVMe Subsystem

Host HPA Space

SLM NSID 1

HDM allocation in HPA space

NSID 2: CXL SLM

Check

SLM NSID 2

9 | ©2024 SNIA. All Rights Reserved.

Configuration of PCIe BAR to SLM
• Device statically assigns one or more SLM Namespaces for PCIe

BAR access
• Device advertises BAR space needs which includes SLM usage

• BAR space for SLM NS access may be smaller than SLM NS size

• Host (PCI Driver) allocates Device BAR space as a normal part of
device discovery/config

• Host (NVMe Driver) manages available BAR space for SLM
access by determining

• NSID, SLM NS Offset, PCIe BAR offset, Length
• May be a contiguous range within CMB BAR

• Device maintains a mapping to translate PCIe Address to SLM
(example shown on next slide)

• Application uses BAR range provided by driver to access SLM
directly using PCIe read/write operations

• Device assigns SLM NS to Device PCI
BAR specifying BAR Offset/Length

• This may be part of CMB BAR space

• Host PCI driver discovers and
configures device PCI interface

• Sets up Device BAR base address
and size

• Calls Device Driver (NVMe)

• NVMe Driver determines device
configuration using Identify
commands

• Checks if SLM NS BAR access is
present

PCIe
SLM BAR?

• NVMe Driver uses device supplied
SLM information to set up
SLM NS<->PCIe BAR map

Continue

No

Yes

10 | ©2024 SNIA. All Rights Reserved.

Host – PCI BAR SLM Address Mapping

NSID n: PCIe BAR

HPA->SLM Map
(per NVMe Controller)

NSID= 1 NS Offset

SLM NVMe I/O Access method

Device SLM Address Space
Managed by
NVMe driver

App
Host CPU
Address
Translation

PCIe Load/Store Access method

PCIe SLM VA
Access

Host HPA Space

Device BAR

SLM space in
Device BAR

NSID 1: PCIe BAR

App Allocated Range in
SLM NSID = 1

App Allocated Range in
SLM NSID = 2

BAR Offset NSID Len

BAR offset NSID Len

NVMe Subsystem

NS Offset

BAR Offset

App Allocated
HPA Range

 SLM NSID = 1

App Allocated
HPA Range

 SLM NSID = n

SLM NSID = 1

SLM NSID = n

…

11 | ©2024 SNIA. All Rights Reserved.

Computational Storage:
A Use for Host Addressable SLM

12 | ©2024 SNIA. All Rights Reserved.

Computational Storage Architecture

Computational Storage Processor Computational Storage ArrayComputational Storage Drive

Host 1 Host n
CS

Driver

I/OMGMT

Device Memory

Computational Storage Resource(s)

Computational
Storage

Engine (CSE)
CSEECSEE

CSFCSF

Resource Repository
CSF CSEECSEECSF

FDM
AFDMAFDM

Fabric (PCIe, Ethernet, etc)

CS
Driver

CS
DriverCS

Driver

Computational Storage Processor (CSP)

Host 1 Host n
CS

Driver

I/OMGMT

Storage
Controller

Device Storage

Device Memory

Computational Storage Resource(s)

Computational
Storage

Engine (CSE)
CSEECSEE

CSFCSF

Resource Repository
CSF CSEECSEECSF

FDM
AFDMAFDM

Fabric (PCIe, Ethernet, etc)

CS
Driver

CS
DriverCS

Driver

Computational Storage Drive (CSD)

Host 1 Host n
CS

Driver

I/OMGMT

Storage
Controller

Storage Device
or CSD

Device Memory

Computational Storage Resource(s)

Computational
Storage

Engine (CSE)
CSEECSEE

CSFCSF

Resource Repository
CSF CSEECSEECSF

FDM
AFDMAFDM

Fabric (PCIe, Ethernet, etc)

CS
Driver

CS
DriverCS

Driver

Array
Control

Storage Device
or CSD

Transparent
Storage
Access

Proxied
Storage
Access

Computational Storage Array (CSA)

CSx = Computational Storage Device – CSP or CSD or CSA

13 | ©2024 SNIA. All Rights Reserved.

A Deeper Dive of the CSx Resources

• CSR - Computational Storage Resources are the resources
available in a CSx necessary for that CSx to store and execute a
CSF

• CSF - A Computational Storage Function is a set of specific
operations that may be configured and executed by a CSE in a
CSEE

• CSE - Computational Storage Engine is a CSR that is able to be
programmed to provide one or more specific operation(s)

• CSEE - A Computational Storage Engine Environment is an
operating environment space for the CSE

• FDM - Function Data Memory is device memory that is available
for CSFs to use for data that is used or generated as part of the
operation of the CSF

• AFDM - Allocated Function Data Memory is a portion of FDM that
is allocated for one or more specific instances of a CSF operation

• Resource Repository – Resources that are available but not
activated

14 | ©2024 SNIA. All Rights Reserved.

NVMe® Computational Storage Basics

• Computational Programs command set
introduced Compute Namespace

• Subsystem Local Memory (SLM)
command set introduced Memory
Namespace

• Compute Namespace can access SLM
Namespace using a Memory Range Set

• CSE = Compute Engine
• CSF = Program
• Function Data Memory (FDM) = SLM
• Allocated FDM = Memory Range Set
• Device Storage = NVM Namespace

Memory Range Set
®

15 | ©2024 SNIA. All Rights Reserved.

Combining NVMe® and CXL® Technologies

16 | ©2024 SNIA. All Rights Reserved.

Benefits of CXL® Load/Store Access

• What does CXL bring to the table that benefits NVMe® technology?
• Provides coherent memory between a host and one or more devices with SLM
• Provides low latency, fine granularity path to access SLM
• CXL.mem provides direct Load/Store access to SLM
• Supports larger memory capacities

• How is this different from PCIe® BAR Access?
• CXL allows both coherency with host memory and MMIO space - PCIe BAR access only

allows host Load/Store access over PCIe using uncached MMIO space
• CXL provides coherency for device access to host memory
• CXL protocol is more efficient than PCIe memory access protocol

• CXL enables lower latency and higher throughput
• CXL protocol has less strict ordering rules than PCIe memory access protocol

• CXL allows Peer-to-Peer communication using CXL.mem instead of MMIO access

17 | ©2024 SNIA. All Rights Reserved.

Benefits of Coherency

• All devices perceive the same view of memory
• Memory viewed between devices is consistent

• All devices perceive the same view of shared data
• Data is up-to-date

• Devices and hosts can push data to each other or pull data from each other
• This includes device-to-device communication

• Avoids or reduces copies that can grow stale

18 | ©2024 SNIA. All Rights Reserved.

Use Cases

19 | ©2024 SNIA. All Rights Reserved.

Use Case 1: Data Post-Processing (Before writing to storage)

• Value Proposition
• Avoid copying data using DMA from/to Host Memory

• Lower latency CXL® based direct Load/Store access, especially for small input data

• Configuration
• Input Data Buffer is in host addressable SLM memory address space

• Output Data Buffer is in SLM

• Example Use Case
1. Application writes (Store) Input Data Buffer using CXL.mem

 Some or all data may reside in Host Cache on completion

2. Host issues NVMe® Execute Program command to Compute
Namespace

3. Compute Namespace Operates on data in Input Data Buffer and
stores results in Output Data Buffer

 Uses CXL BI Snoop protocol to keep Host Cache coherent with Input Data Buffer

4. CQE is posted for the Compute Namespace
5. Host issues NVMe Copy command to copy data from Output Data

Buffer to Storage Media
6. Data is copied to Storage Media from Output Data Buffer
7. CQE is posted for the NVM Namespace

SLM NS1: CXL

Compute
NS

Coherency Eng

CXL.IO CXL.Mem

Storage Media

NVM NS

NVMe I/F

CPU Cores

CPU Cache

CXL.io/CXL.mem

Host
Local

Memory

Host

H
os

t M
C

Input Data Buffer

12/45/7

6

Ho
st

Lo

ca
l M

em
or

y
SL

M

CX
L

M
em

or
y

Host Coherent HPA Space

Input Data
Buffer

CXL Fabric

Computational Storage Drive

CXL.mem

CXL.io/NVMe

CSD Local

App

Store

SLM NS 2: NVMe

Output Data Buffer
3

SLM Media

SLM NSes

20 | ©2024 SNIA. All Rights Reserved.

Use Case 2: Peer Data Processing

• Value Proposition
• Bypass data movement through host memory

• Configuration
• Data resides in peer device and is moved to Input Data Buffer

• Output Data Buffer is in host addressable SLM

• Example Use Case
1. Host issues NVMe® Read command to Drive B with the

destination is Input Data Buffer on Drive A
2. Data is transferred P2P from Drive B to Drive A
3. CQE is posted for READ command
4. Host issues NVMe Execute Program command to Compute

Namespace on Drive A
5. Compute Namespace on Drive A operates on data in Input

Data Buffer and stores results in Output Data Buffer
6. CQE is posted for the Compute Namespace
7. Host issues NVMe Copy command to copy data from

Output Data Buffer to Storage Media
8. Data is copied to Storage Media from Output Data Buffer
9. CQE is posted for the NVM Namespace

CPU Cores

CPU Cache

CXL.io/CXL.mem

Host
Local

Memory

Host

H
os

t M
C

8

1/3

CXL Fabric

2

7/9

CXL.mem

CXL.io/NVMe

CSD Local

Computational Storage Drive ‘B’

SLM NS2:
Host Addressable

Compute
NS

Coherency Eng

CXL.IO CXL.Mem

Storage Media

NVM NS

NVMe I/F

Output Data Buffer

SLM Media

SLM NS

Input Data Buffer

Computational Storage Drive ‘A’

SLM NS1:
Host Addressable

Compute
NS

Coherency Eng

CXL.IO CXL.Mem

Storage Media

NVM NS

NVMe I/F

Output Data Buffer
5

SLM Media

SLM NS

Input Data Buffer

Ho
st

Lo

ca
l M

em
or

y
SL

M

CX
L

M
em

or
y

Host Coherent HPA Space

Output Data
Buffer

Input Data
Buffer

Output Data
Buffer

Input Data
Buffer

4/6

21 | ©2024 SNIA. All Rights Reserved.

Use Case 3: Data Post-Processing with a Standard SSD
• Value Proposition

• Bypass data movement through Host memory

• Configuration
• Input Data Buffer is in host addressable SLM memory address space

• Output Data Buffer is in host addressable SLM memory address space

• Example Use Case
1. Application writes (Store) Input Data Buffer using CXL.mem

 Some or all data may reside in Host Cache on completion
2. Host issues NVMe® Execute Program command to Compute

Namespace
3. Compute Namespace operates on data in Input Data Buffer and

stores results in Output Data Buffer
 Uses CXL BI Snoop protocol to keep Host Cache coherent with Input Data

Buffer and Output Data Buffer
4. CQE is posted for Compute Namespace
5. Host generates IO Write to SSD NVM Namespace

 Data Pointer points to Output Buffer in SLM (HDM)
6. SSD uses PCIe® UIO for direct P2P from HDM space and writes

to storage media
 Since output buffer is in CXL HDM space, UIO can’t use BAR space for P2P

7. CQE is posted for NVM Namespace

CPU Cores

CPU Cache

CXL.io/CXL.mem

Host
Local

Memory

Host

H
os

t M
C

5/7 1

CXL Fabric

Computational Storage Processor

PCIe .IO
NVMe I/F

STORAGE

Standard SSD

UIO (P2P)

NVM
NS

2/4

6

CXL.mem

CXL.io/NVMe

CSD Local

SLM NS: CXL

Compute
NS

Coherency Eng

CXL.IO CXL.Mem

NVM NS

NVMe I/F

Output Data Buffer
3

SLM Media

SLM NS

Input Data Buffer

Ho
st

Lo

ca
l M

em
or

y
SL

M

CX
L

M
em

or
y

Host Coherent HPA Space

Output Data
Buffer

Input Data
Buffer

App

Store

22 | ©2024 SNIA. All Rights Reserved.

Use Case 4: Data Pre-Processing (before sending to host)

• Value Proposition
• Avoid copying data using DMA from/to Host Memory
• Lower latency CXL based direct Load/Store access,

especially for small output data
• Configuration

• Input Data Buffer is in SLM
• Output Data Buffer is in host addressable SLM

• Example Use Case
1. Host issues NVMe Memory Copy command to SLM NS
2. Data copied from NVM NS to Input Data Buffer
3. CQE is posted for SLM NS
4. Host issues NVMe Execute Program command to Compute NS
5. Compute NS operates on data in Input Data Buffer and stores

results in Output Data Buffer
 Uses CXL BI Snoop protocol to keep Host caches coherent

with Output Data Buffer
6. CQE is posted for Compute NS
7. Application reads (ld/st) Output Data Buffer using CXL.mem

23 | ©2024 SNIA. All Rights Reserved.

Summary and Next Steps

• CXL® and NVMe® technologies can be used simultaneously
• Coherent memory between a host and one or more devices with SLM
• CXL.mem provides direct Load/Store access to SLM

• TP4184
• Enables Host Addressable SLM

• Both CXL and PCIe® BAR access methods
• Currently in the architecture phase

• Looking Ahead
• CXL and NVMe Computational Storage are on trajectories that will intersect
• Enhancing NVMe SLM to support CXL is a step to enable convergence/collaboration

24 | ©2024 SNIA. All Rights Reserved.

What do you think Computational Storage is

Please complete a survey on your view of Computational Storage
1) What is Computational Storage? (Multiple Choice)
2) How would you use computational storage? (Fill in the blank)
3) What is the future and evolution of computational storage? (Multiple Choice)
4) Any other thoughts/ideas on computational storage?

25 | ©2024 SNIA. All Rights Reserved.

Please take a moment to rate this session.
Your feedback is important to us.

	Host Addressable SLM
	Speakers
	Agenda
	Slide Number 4
	Why Provide Host Addressable SLM?
	Host Addressable SLM – NVMe® TP4184
	Potential Config Flow for CXL® SLM
	Host – CXL® SLM Address Mapping
	Configuration of PCIe BAR to SLM
	Host – PCI BAR SLM Address Mapping
	Slide Number 11
	Computational Storage Architecture
	A Deeper Dive of the CSx Resources
	NVMe® Computational Storage Basics
	Slide Number 15
	Benefits of CXL® Load/Store Access
	Benefits of Coherency
	Slide Number 18
	Use Case 1: Data Post-Processing (Before writing to storage)
	Use Case 2: Peer Data Processing
	Use Case 3: Data Post-Processing with a Standard SSD
	Use Case 4: Data Pre-Processing (before sending to host)
	�Summary and Next Steps
	What do you think Computational Storage is
	Please take a moment to rate this session.

