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The Problem: Just Another AI presentation

Memory never outgrows the requirements of data.

❑  5Vs (Volume, Velocity, Value, Variety, Veracity)

❑  AI requirements are becoming “more” multi-modal

❑  Text, images, videos, etc. (Everything!)

❑  Data is also becoming sparser.

❑Models and data (+metadata) cannot fit in a single 

system.
**Calculations based on FP16 precision AI Training. 
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Data Movement: The necessary Evil!

[1] Gartner (February 14, 2024): Top Storage Recommendations to Support Generative AI 

[2] Engineering at Meta (March 12, 2024): Building Meta’s GenAI Infrastructure : 

❑  Most focus has been in E-W traffic (i.e., compute). 

❑ Parallelism, collective optimizations, batching, data-types, 

quantization, etc.

❑ Build bigger and wider distributed systems $$$...$$ .

❑ Scale-up and scale-out.

Storage despite being a key-player in AI, is often over-looked [1] and least 

talked about [2].

*Storage is used inter-changeably to imply the storage ecosystem (devices, nodes, servers, storage networks). 

❑ Storage can easily become the bottleneck and GPUs critical compute 

resources need to wait for data.

Large amounts of data must move across inter + intra nodes, servers, 

racks, servers, data-centers.   

https://www.gartner.com/en/documents/5196363
https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/
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Lifecycle of Data in AI

PBs TBs TBs TBs PBs

Phase 1 Phase 2 Phase 3
(a) (b) (a) (b) (b)(a)

(a) Ingest massive objects via bulk-insert 

(streams) across data-sources/clouds/data-

centers, etc. 

(b) Multiple transform pipelines (ETL) of data 

to prepare “tensors” for training. – Annotation, 

indexing and search intensive. 

(a) Loading trained model parameters, and 

process inference queries for real time 

output generation (store). 

(a) Loading model, batches of data for parallel 

training; update weights and parameters, 

while persisting checkpoints. Repeat (epoch).

(b) Validate the model parameters and 

gradients. Replays.

(b)  Lifecycle management of data; retain 

training data and model for long. 

Challenge: Maximize GPU/compute utilization and reduction of stalls due to storage. 
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Phase 1: Data Ingestion and Pre-processing

[1] Zhao, Mark, et al. "Understanding data storage and ingestion for large-scale deep recommendation model training: Industrial product." Proceedings of the 49th annual international symposium on computer architecture. 2022.

[2] Zhao, Mark, et al. "RecD: Deduplication for end-to-end deep learning recommendation model training infrastructure." Proceedings of Machine Learning and Systems 5 (2023): 754-767.

Ingestion and Pre-processing consume more power than 

Training itself at a Hyperscalar infrastructure [1].

[1]

(b) High R/W throughput; Sequential Writes, Advanced Compression/De-

compression; Metadata heavy, High queue depth. 

(a) PB-scale capacity; Object/file protocol; Concurrent W throughput; High 

queue depth; Encryption.

❑ Data Ingestion: Aggregate data (text, images, videos, etc.), 

shapes, sizes, and store them in various formats efficiently 

for pre-processing.

❑ Log aggregation via Kafka like-streams, or streams on top of RocksDB [1].

❑ ETL type pipelines and features (mostly, sparse) are updated often. 

❑ Pre-processing: Continuously transform raw data into pre-

processed tensors for Training jobs to consume as efficiently 

(low latency, high throughput).

❑ Iteratively read samples (features) dynamically in different formats.

❑ Raw data is transformed into training samples.  

❑ Filtering, decryption, reconstructions, and multiple format transformations [1] (multiple ETL jobs).
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Data Ingestion, Preprocessing - Issues

[1] Zhao, Mark, et al. "Understanding data storage and ingestion for large-scale deep recommendation model training: Industrial product." Proceedings of the 49th annual international symposium on computer architecture. 2022.

[2] Zhao, Mark, et al. "RecD: Deduplication for end-to-end deep learning recommendation model training infrastructure." Proceedings of Machine Learning and Systems 5 (2023): 754-767.

❑ Raw data is transformed into training samples (tensors): 

heavy filtering.

❑ Training jobs are diverse and geo-distributed. 

❑ Data is usually sparse, and operations involve high reductions 

ratios (filtering).

IO Tax

Therefore, it is extremely critical to have DIP pipelines in 

infrastructure which is highly optimized for storage and retrieval of 

training data.  

❑ When Preprocessing executed by Training Nodes (CPUs) can cause 

GPUs stall for the data. 

❑ High IOPS from storage servers. 

❑ Bottlenecked by front-end resources (CPU, Memory)

❑ NICs are highly over-subscribed (@line-rate)
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Phase 2: AI Training

[1] Dubey, Abhimanyu, et al. "The llama 3 herd of models." arXiv preprint arXiv:2407.21783 (2024).

[2] Qian, Kun, et al. "Alibaba hpn: A data center network for large language model training." Proceedings of the ACM SIGCOMM 2024 Conference. 2024.

For Hyperscalar Llama 3 405B pre-training on 16K GPUs, the Model FLOPs Utilization is ~ 41% [1].

(BF16;  4D parallelism TP=8, CP=1, PP=16, DP =128) 

❑ Extremely high memory req. (TBs) – (a) model states; (b) activations; (c) training data; (d) checkpoints.

❑ Highly bursty (intense) and periodic (line-rate of host-NICs 400Gbps),  etc. [2].

❑ Both E-W traffic (collectives) and N-S traffic (loads and checkpoints).
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Model and Data Load(s)

[1] Zhao, Mark, et al. "Understanding data storage and ingestion for large-scale deep recommendation model training: Industrial product." Proceedings of the 49th annual international symposium on computer architecture. 2022.

[2] Zhao, Mark, et al. "RecD: Deduplication for end-to-end deep learning recommendation model training infrastructure." Proceedings of Machine Learning and Systems 5 (2023): 754-767.

❑ Model Load significant (TBs), but once/epoch. 

*Estimating, 200 tokens/ parameter required for training with 4 bytes/token.

❑ Training samples loaded in batches to Training Nodes.

❑ For 1T para. model, O(800TB)* of data required for high-end 

training. 

❑ Data Load (Preparation) incurs high data-center tax.

❑Host resources and network highly over-subscribed.

❑DLRM data has high-scope for de-duplication [2]. 

❑Diverse functions, mostly filtering ops, (de)-compression, etc.

High Read throughput required, Large # of small file 

random reads (metadata heavy).

Significant GPU stalls due to inefficient load pipelines [1,2]. 

Near-Storage Computation ???

Time

Highly read latency sensitive.

Spectrum of IO sizes (batches, mini-batches, re-plays)
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Phase 2: AI Training – Checkpointing

❑  Checkpointing is the critical mechanism of saving snapshots and 

vital information of the model.  

 Fault-tolerance 101: With ever lowering MTBF(s) checkpointing frequency will increase [1,2]. 

❑ Crash on any GPU could be extremely 

expensive (time, money, power, resources, etc.).

❑ Customer of a hyperscalar, checkpointing every hour 

training with a 3K GPU cluster, rollback costs $30K [2]. 

[1] Qian, Kun, et al. "Alibaba hpn: A data center network for large language model training." Proceedings of the ACM SIGCOMM 2024 Conference. 2024.

[2] Dubey, Abhimanyu, et al. "The llama 3 herd of models." arXiv preprint arXiv:2407.21783 (2024).

❑  Also used for: 

❑ Hardware refresh, Resource re-balancing, Fine-tuning, early-kill (if error rates go up), increase accuracy, etc. 

 

❑  Training jobs typically run for weeks and months.
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Checkpointing: What is involved?

❑ Checkpointing = Serialization + Persistence 

[1] Qian, Kun, et al. "Alibaba hpn: A data center network for large language model training." Proceedings of the ACM SIGCOMM 2024 Conference. 2024.

[2] Dubey, Abhimanyu, et al. "The llama 3 herd of models." arXiv preprint arXiv:2407.21783 (2024).

❑ Serialization : Create tensor file compatible structures, 

quantize data, augment metadata for ease of reconstruction 

during checkpoint restore (loads).

❑ Persistance: Write tensor serialized quantized files to remote 

persistent storage. 

❑ Remote storage : scalability, high-availability. 

❑ no. of files and size also depends on parallelism shard.  

❑ Checkpointing creates sequence of writes to file. 

What goes into a checkpoint ? 

❑ Model parameters (weights, biases), optimizer state (momentum, 

variance, gradients), and may contain - metadata- data type, size, 

reader state information (iterator), GPU rank, parallelism, etc.

With growing model sizes, checkpointing frequency and checkpointing size grows exponentially 

gets more distributed and complicated (persisting and restore).
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Checkpointing: From ground up! 

* * Highly Simplified representation (not actual). Complex interactions, 

checkpointing optimizations and collectives not shown for simplicity.  

Only for illustration 
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              Training is paused and GPUs across ranks need to wait for the checkpoints to persist.

Inefficient, synchronous, compute, network and 

storage infrastructure agnostic checkpointing can 

lead to increasing training time, wasting data-

centric resources. Collectives (All-reduce) 

to accumulate 

gradients

Training is paused and constricted by the 

slowest TrainingNode - Storage path. 
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Checkpointing – Impact on Infrastructure @ scale

[1] Qian, Kun, et al. "Alibaba hpn: A data center network for large language model training." Proceedings of the ACM SIGCOMM 2024 Conference. 2024.

[2] Dubey, Abhimanyu, et al. "The llama 3 herd of models." arXiv preprint arXiv:2407.21783 (2024).

 The goal for storage ecosystem (compute, network, storage subsystem) should be 

maximizing GPU BW utilization and minimizing the time to load and store checkpoints. 

❑ Persistence and restores getting tougher with complex interactions.

❑  Data-Parallelism (DP), Tensor Parallelism (TP), 3D parallelism (TP, PP, DP), now 4D parallelism, etc. 

 

High R/W bandwidth with tight latency. 

❑ For storage systems: manage network and storage BW for persisting multiple large 

checkpoints concurrently from different models being run in the data-center (each TBs). 

❑ Highly bursty and periodic (@NIC line-rate): saturates storage fabric for Llama 3 training [2].

❑ Unpredictable tail-latencies + multi-tenancy: SLA misses.

❑ Storage NICs over-subscribed: need for efficient rate-limiting schedulers to reduce stalls and failures. 

❑ Checkpointing footprint on Training Nodes (/GPU) and storage subsystem 

is massive. 

❑ With growing model size, total checkpoint size and /GPU size grows.

❑ For hyperscalars, 30GB/GPU [1], Llama 3 training - 1MB-4GB/GPU [2]. 
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Phase 3: AI Inference

❑ Most inference deploying infrastructures are latency sensitive to for providing real-time 

output for user-queries.

❑ Requires reliable and fast deployment of the model by loading trained models efficiently 

and with minimal time-to-deploy. 

❑ Storage subsystems need to provide strict low-latency SLA guarantees for multi-tenant 

environments, especially for batched LLMs. 

❑  Characterized mostly by small random read IOs. 

❑  Same data is shared by multiple jobs  (performance isolation). 

❑  Requires Scale-out storage (for sharing between GPUs) and high availability with high 

performance.

Scale-out, shared, high-performance storage with low-latency, high R 

bandwidth for saturating Inference node GPUs occupied with data.
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Emerging AI Inference : RAGs & VectorDBs

❑ RAG applications have huge storage footprint.

❑ GenAI j bs a e bec  ing “   e” mutli-modal – images, text, videos, etc. {Objects}

❑ Continuous data ingestion (via kafka streams), indexing (embeddings), and real-time 

augmentation, and inference (retrieval/filtering), etc.

 

❑ LLMs during Generation suffer from hallucinations, and inaccurate information.

❑ Models trained at prior timestamp, time-varying information either won't be present (or) 

becomes irrelevant when inference queries arrive. 

❑ Businesses would like domain-specific context and still do not want expose internal data 

to foundation models. 

❑ Therefore, RAG (Retrieval Augmented Generation).

❑ Augments external information (or large corpus) and user-queries to Retrieve most 

relevant information (top_k) as context to foundational LLMs for Generating most 

relevant/accurate response. 

Memory can never be enough to fit the needs of data + metadata.
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RAG and VectorDB: In action and challenges

Reduction of data-movement and Host-Storage 

read BW expansion is essential for faster real-time 

response.

 

❑ Data ingestion (logs via streams) : 

sequential writes (high BW). Object 

storage preferred.  

❑ Embedding model (a) loads: 

high read BW and low latency for fast 

deployment. 

❑ Indexing : create embedding vectors 

(clustering).  

high read/write BW. 

❑ Retrieval: filtering + search for Vector Search Similarity to find 

the top_k contexts.

❑ Transfer large no. of files (data and index) across the network from 

storage to inference GPU servers. 

Large amounts of data transfers over network with very high reduction ratio.

❑ Storage → CPU BW (requires high storage BW); CPU→GPU BW; GPU-

GPU BW for data copy and reduction.
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IO Blender

❑ Typically, GenAI deployments are shared and used 

by multiple tenants.

❑ Distinct IO features for individual phases are not usually 

observed, but a mixed IO profile. 

❑ Different phases of multiple AI pipelines execute in 

parallel. 

❑ Performance isolation to every client (and phase) is 

quintessential.

❑ Extremely metadata heavy – large number of file ops. 

  

For maximal GPU utilization, performance isolation and SLA guarantees 

should be ensured by the storage ecosystem.
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Final Penultimate Thoughts !

❑Requirements of AI from storage is nearly everything and 

anything (just name it or just think, and you need it). 

❑ Primarily: $/capacity, RAS, bandwidth (R/W), low-latency, power budget, 

highly performant metadata management, etc.

  

❑Assume there will be failures in the system all the time. 

Embrace for the traffic storm to/fro storage. 

  

A unified storage will be required with performance isolation to capture the needs of the different 

phases of the AI pipeline(s) (refer image) for large-scale infrastructure. 

❑ There will be a lot of data, required all the time, at the 

fastest rate as possible across multiple subsystems. 
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Final Thoughts ! (Finally, not yet.)

❑Complete re-design of end-to-end (GPU optimized) infrastructure.

❑ Inter+ Intra GPU node interactions @ scale : UALink. 

❑ Efficient transport mechanism : Ultra-Ethernet. 

❑ Highly optimized GPU-Storage interactions.

❑ Direct RDMA like services@scale. 

❑ Inter-operable Accelerator (GPU) direct interfaces to all kinds of storage. 

  

  

❑ Domain-specific and programmable HW-SW co-design across the 

entire compute, network and storage stack.

❑ Compute Everywhere and Anywhere: CPU offloads, in-network 

computations (NIC), near storage computations (DPUs, CPUs), etc.

 

❑ AI Storage topology considerations – converged or not? 

❑ Balance Storage Foreground vs Background traffic.

❑ Define the appropriate transport for storage over NVMe-oF. 

Main objective is keeping the highly 

performant GPUs occupied with datasets at 

the correct time. 
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Final Thoughts ! (Finally.)

Reduce the data-entropy tax, and maximize the utilization of compute, network and 

storage resources to satiate (or try) the advances of large-scale AI computing for today 

and tomorrow. 
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Conclusion

Storage despite being a key-player in AI, is often over-

looked and (least talked about **). 

**As an industry, need to come together to change this (period!) 
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