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The State of the CXL Software Ecosphere
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Linux Kernel & QEMU CXL Specification Support Roadmap

5.16
Mainline Kernel Version

Kernel TPP
- Promotion & Demotion

5.18 6.0 6.1 6.2 6.3 6.5

CXL1.1

CXL 2.0

CXL 3.0

6.8 6.9 6.11 6.12

Kernel Weighted 
Interleaving

CXL 3.1

CXL Dynamic Capacity 
Device Support

QEMU Version

7.2 8.0 8.1 8.2 9.0 9.1

- Added support for CXL 3.0 
Type 3 devices
- Introduced CXL 3.0 HDM 
Decoder Capability Structure
- Added CXL 3.0 QoS 
Telemetry Capability

- Improved documentation on 
CXL memory interleaving
- Added information on CXL 
2.0 support
- Introduced CXL Type 1 and 
Type 2 device support
- Added CXL MMIO Caching 
support

- Initial introduction of CXL 2.0
- Basic CXL Switch support
- CXL Memory Interleaving
- CXL Type 3 Device Support

- Major expansion of CXL 
support

- Added support for CXL 2.0 
HDM Decoder Capability 
Structure
- Introduced CXL 2.0 QoS 
Capability Structure
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Useful Tools & Software
Administration

 cxl
 daxctl
 dmesg
 lspci
 lstopo (>3.0)

Memory Tiering
• Kernel AutoNUMA
• numactl
• Kernel TPP

• Latency (v5.18)
• Kernel Weighted NUMA 

Interleaving/Bandwidth (v6.9)
• MemVerge Memory Machine

• Latency
• Bandwidth

• Intel ‘Heterogeneous Memory’ 
BIOS Options

• AMD ‘Special Purpose Memory’ 
BIOS Options * Tech Preview

Fabric Mgt
• Jack Rabbit Labs
• Vendor-Specific APIs and 

Tools
• fm_cxl**
• cxl-fabric-manager*

Telemetry
• MemVerge Memory Machine
• CPU Specific Tools

• Intel PCM
• AMD 𝜇𝜇Prof

• perf & eBPF

Emulation
• QEMU

• Expansion
• Sharing **
• DCD **

** Requires Patches

https://github.com/computexpresslink/cxl-fabric-manager
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Memory Appliance

How Applications will use CXL for Large-Scale Datasets

Unmodified Application

MemVerge Memory Machine 

CXL Memory 
Device

CXL Memory 
Device

NUMA Node
(System-Ram 

Device)

NUMA Node
(System-Ram 

Device)

Hardware

Kernel

User Space

Host #1

Memory Expansion

Memory Appliance

Host #1

MemVerge 
Memory Machine

Unmodified 
Application

Host #2

MemVerge 
Memory Machine

Unmodified 
Application

CXL Memory Device
CXL 

Memory 
Device

CXL 
Memory 
Device

NUMA Node
(System-Ram Device)

NUMA 
Node

NUMA 
Node

Memory Pooling

/dev/dax0.0
(Character Device)

/dev/dax0.0
(Character Device)

Shared Memory

Host #1

MemVerge 
GISMO

ShMem 
Application

Host #2

MemVerge 
GISMO

ShMem 
Application

Memory Sharing
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CXL Architecture (Type 3 .mem)

Confidential  |  CXL® Consortium 2024

[Un]modified Application

Middleware / SDKs / numactl

cxl create-region

cxl reconfigure-device
daxctl list
cxl list

libnuma

mkfs

mmap()

CXL Memory 
Device

HW Interleaving & Partitioning 
(BIOS, Switch, JBOM, Appliance)

CXL Memory 
Device

/dev/dax0.0
(Character Device)

Region0

NUMA Node
(System-RAM Device)

mmap(), malloc()

Region 1
(Kernel Interleaved)

CXL Memory 
Device

CXL Memory 
Device

/dev/dax0.0
(Character Device)

NUMA Node
(System-Ram Device)

CXL Memory 
Device

NUMA Node
(System-Ram Device)

Region 2

/dev/dax0.0
(Character Device)

Persistent CXL 
Memory Device

/dev/pmem0.0
(Block Device)

Region 5

EXT4/XFS
(Block Device)

mmap(),
read(),write()

Hardware

Kernel

User Space

SLD, MLD, DCD,
MH-SLD, MH-DCD,
SHMEM, PMEM Shared Memory

/dev/dax0.0
(Character Device)

Region0

CXL is in SPM Mode

mmap(), malloc()

Future

Choose DevDAX 
or SystemRAM

Dynamic Capacity 
Device (DCD)

/dev/dax0.0
(Character Device)

Region0

Near FutureToday
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References

 Linux Kernel Documentation:
 https://www.kernel.org/doc/html/latest/

 Linux CXL Subsystem Maturity Map: 
 https://docs.kernel.org/driver-api/cxl/maturity-map.html

 NDCTL/CXL Utility Releases:
 https://github.com/pmem/ndctl/releases

 Linux Kernel Release Dates:
 https://phb-crystal-ball.sipsolutions.net/

 Linux Kernel Mailing List (NVDIMM/CXL):
 https://lore.kernel.org/nvdimm/

 QEMU Mailing List:
 https://lore.kernel.org/qemu-devel/

 QEMU CXL Documentation:
 https://www.qemu.org/docs/master/system/devices/cxl.html

https://www.kernel.org/doc/html/latest/
https://docs.kernel.org/driver-api/cxl/maturity-map.html
https://github.com/pmem/ndctl/releases
https://phb-crystal-ball.sipsolutions.net/
https://lore.kernel.org/nvdimm/
https://lore.kernel.org/qemu-devel/
https://www.qemu.org/docs/master/system/devices/cxl.html


9 | ©2024 SNIA. All Rights Reserved.

Benchmarking CPU, Memory, 
and GPU Performance
The Tools of the Trade
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Benchmarking CPU, Memory, and GPU Performance

Observability Tools

GPU CPU

DRAM

CXL

nvtop
nsys (Nsight)
intel_gpu_top
intel_gpu_time

numastat
perf

Intel PCM
AMD uProf

mpstat
htop/top
Dstat

AMD uProf

MemVerge Memory Machine X

nvbandwidth
cuda_examples/bandwidth_check

CXLBench
<Application Benchmark>

Benchmark Tools

Reference: https://stevescargall.com/blog/2024/08/benchmarking-gpus-measuring-throughput-between-cpu-and-gpu/

GPU0 GPU1 GPUn

NUMA0

NUMA1

NUMAn

Test Matrix
(per CPU Socket)
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Benchmark Examples

Tips: 
• Use numactl to manage host memory and CPU locality
• Use pinned host memory for optimal throughput

• TradeOff: Memory Tiering doesn’t work, but 
                  Weighted Interleaving does

NVidia nvbandwidth CUDA Examples: Bandwidth_Check
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Accelerating TPC-C with Samsung CMM-B Memory 
Pooling Appliance for Computing

SUT: 2 x Intel 5th Gen Xeon 8570 (56 Cores), 512GB DRAM Total (32GB x 16 @ 4800 MT/s), 512GB CXL, Ubuntu 22.04 running Kernel 5.18.0, MemVerge Memory Machine v1.5.0
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Benefits:
• Up to 60% Higher Transactions per Second
• Up to 40% Lower P95 Latency
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References

CXLBench
 https://github.com/cxlbench/cxlbench

NVidia NVBandwidth
 https://github.com/NVIDIA/nvbandwidth

CUDA Examples
 https://github.com/drkennetz/cuda_examples

https://github.com/cxlbench/cxlbench
https://github.com/NVIDIA/nvbandwidth
https://github.com/drkennetz/cuda_examples
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Memory Placement and 
Movement Strategies
Latency and Bandwidth Optimized Policies
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Memory Placement & Movement Policies

 

Latency tiering policies intelligently manage 
data placement and movement to match 
the "temperature" of memory pages – Hot or 
Cold – with the right tier of memory devices.

Application

DRAM CXL

Bandwidth Tiering Policies strategically 
place data between different tiers of 
memory proportionate to the 
bandwidth ratio of the tiers

Application

DRAM CXL

Latency Optimized (Tiering) Bandwidth Optimized
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 Contributed by MemVerge & SK hynix
 Available in Kernel 6.9 or newer: 

https://github.com/torvalds/linux/blob/master/mm/mempol
icy.com

 Weighted interleave is a new policy intended to use 
heterogeneous memory environments appearing with 
CXL.

 Weighted interleave distributes memory across nodes 
according to a provided weight. (Weight = # of page 
allocations per round).

 As bandwidth is pressured, latency increases. Figure 1

 Allows greater use of the total available bandwidth in a 
heterogeneous hardware environment. Figure 2

Weighted NUMA Interleaving (Bandwidth Optimized)

Confidential  |  CXL® Consortium 2024

Figure 1: Throughput vs Latency (Hockey Stick)

Node 0 Node 1

Weights: 67% 33%

DRAM: CXL:

Figure 2: Weighted Interleave Example

Node 0 Node 1

Weights: 50% 10%

DRAM: CXL:

Node 5

CXL:

10%

Figure 2: Weighted Interleave 5 x CXL Example

…
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 Available in Kernel 6.8 or newer
 Applications may choose which node to allocate their memory based on the NUMA 

node's performance characteristics.
 The performance characteristics the kernel provides for the local initiators are exported 

as follows:

# tree -P "read*|write*" /sys/devices/system/node/nodeY/access0/initiators/ 
/sys/devices/system/node/nodeY/access0/initiators/ 
|-- read_bandwidth (MB/s)
|-- read_latency (nanosec)
|-- write_bandwidth (MB/s)
`-- write_latency (nanosec)

 Documentation: https://www.kernel.org/doc/html/latest/admin-guide/mm/numaperf.html

NUMA Quality-of-Service (QOS)

Confidential  |  CXL® Consortium 2024

https://www.kernel.org/doc/html/latest/admin-guide/mm/numaperf.html
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References

 Introducing Weighted Interleaving in Linux for Enhanced Memory 
Bandwidth Management
 https://memverge.com/introducing-weighted-interleaving-in-linux-for-enhanced-

memory-bandwidth-management/
 Primer: What it is, How it works, and How to use it.
 Requires Kernel 6.9+ and one or more CXL devices (or QEMU)

 Linux Kernel Docs
 https://www.kernel.org/doc/html/latest/admin-

guide/mm/numa_memory_policy.html#components-of-memory-policies
 See MPOL_WEIGHTED_INTERLEAVE

https://memverge.com/introducing-weighted-interleaving-in-linux-for-enhanced-memory-bandwidth-management/
https://memverge.com/introducing-weighted-interleaving-in-linux-for-enhanced-memory-bandwidth-management/
https://www.kernel.org/doc/html/latest/admin-guide/mm/numa_memory_policy.html#components-of-memory-policies
https://www.kernel.org/doc/html/latest/admin-guide/mm/numa_memory_policy.html#components-of-memory-policies
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The Importance of Memory in AI/ML Workloads
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The Importance of Memory in AI/ML workloads

Main System Memory: The Unsung Hero of AI/ML Performance
• Capacity Demands:

• Large AI models (e.g., GPT-3, BERT) require hundreds of GB to TB of memory
• Training datasets often exceed available DRAM capacity
• Model parallelism and data sharding limited by memory constraints

• Bandwidth Bottlenecks:
• AI/ML operations are memory-bound, not compute-bound
• High-speed data movement is crucial for model training and inference
• GPUs are often starved for data due to insufficient system memory bandwidth
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The Importance of Memory in AI/ML workloads

Critical Memory Requirements in AI/ML:
• Training Large Models:

• Memory capacity directly impacts model size and complexity
• Larger memory capacities allow for bigger batch sizes, improving convergence

• Real-time Inference:
• Low-latency memory access is essential for responsive AI applications
• In-memory processing reduces data movement, enhancing inference speed

• Data Preprocessing and Feature Engineering:
• Memory-intensive operations for data cleaning and transformation
• Faster memory enables quicker iteration in feature selection

• Distributed Learning:
• High-bandwidth memory is crucial for efficient parameter sharing
• Reduces communication overhead in multi-node training setups
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The Importance of Memory in AI/ML workloads

CXL: Addressing the Memory Challenge
• Expands memory capacity beyond DRAM limits
• Provides high-bandwidth, low-latency access to limitless memory pools
• DCDs enable flexible memory allocation for dynamic AI/ML workloads
• Shared Memory reduces data movement, reducing network and storage I/O
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AI/ML Workloads
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 FlexGen is a high-throughput 
generation engine for running 
large language models with 
limited GPU memory. 
 FlexGen allows high-

throughput generation by 
efficient offloading to main 
memory (or CXL)
 Paper: 

https://arxiv.org/abs/2303.06865
 GitHub: 

https://github.com/FMInference/
FlexGen

Tiered Memory Inferencing

https://arxiv.org/abs/2303.06865
https://github.com/FMInference/FlexGen
https://github.com/FMInference/FlexGen
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The Magic of RAG is in the 
Retrieval
Optimizing the RAG Pipeline for Efficient Data Retrieval
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Improved RAG Pipeline - LlamaIndex example

Retrieval Prompt LLM 
Model

Vector 
DB Embedding Enterprise

Knowledge

Generation
Query Answer

RAG Pipeline 

LLamaIndex
Composable 

Memory

Vector
 Data DB1

Chat 
History

Retrieval Prompt LLM 
Model

Generation
Query 

Answer

Improved RAG Pipeline 

Vector
 Data DBn

Embedding Enterprise
Knowledge

Benefits of Adding CXL Memory in a RAG Pipeline:

• Up to 30% higher Requests per Second from each Qdrant DB

• Efficient retrieval of large-scale and multiple vector databases

• Improved User answer quality due to rich retrieved context

• Large memory capacity can be shared and pooled across nodes

• Improved RAG performance improves GPU utilization

Common Bottlenecks in a RAG Pipeline:
• CPU: Embedding generation
• GPU: LLM inference
• Memory: Storing large datasets and 

embeddings spills to disk
• Storage I/O: Reading/writing vector data

SUT:Supermicro Petascale Server, 2 x Intel 5th Gen CPUs (32 Cores), 1 TB RAM (16 x 64GB DDR5-5600), 4 x Micron CZ120 CXL Memory Expansion Devices,
        NVidia A10, RHEL 8 running Kernel 6.8, MemVerge Memory Machine 1.5.0, LLamaIndex, Qdrant Vector Database, Llama2 Model
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Micron Confidential

Micron Confidential

RAG Workload Analysis for CXL

RAG Workload Result 
Summary  
 30% Improvement by adding CXL Memory to Server

 Tuning of the interleaving ratio required to 
optimize perf

 Vector DB Index tables MUST fit in memory to avoid 
steep performance drop

 CXL adds more modularity and capacity to “scale up” 
RAG model

Also, CXL adds TCO benefits 
via Pooling and Sharing
 DRAM memory allocated for RAG execution be freed for 

general purpose
 Vector DB tables in CXL Mem can be shared and pooled 

across other RAG nodes/VMs
 Higher CXL capacity reduces power by reducing data 

transfers over storage network

1.0
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DRAM DRAM + CXL
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Vector DB1 Vector DB1

Vector DB2

Vector DBn

System RAM

* Based on VectorDDBench and Memory Machine v1.5.0 with 9:1 DDR/CXL Interleaving ratio; measured at p99 latency

Improved RAG 
Model

1.3*

QDRNT (10M)
With CXL
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How Much RAM Could a Vector Database Use If a Vector Database 
Could Use RAM

A formula to estimate the raw and total memory required to store the data (dense vectors):

Raw: Memory (bytes) = Vector Length × Number of Vectors × Size of Data Type
Total: Memory (bytes) = Vector Length × Number of Vectors × Size of Data Type × DB Metadata Ratio

Reference: https://stevescargall.com/blog/2024/08/how-much-ram-could-a-vector-database-use-if-a-vector-database-could-use-ram/

Vector 
Length

Data Type Data Type 
Size (bytes)

1M Vectors 10M 
Vectors

25M 
Vectors

50M 
Vectors

100M 
Vectors

384 FP32 4 1.536 GB 15.36 GB 38.4 GB 76.8 GB 153.6 GB

768 FP32 4 3.072 GB 30.72 GB 76.8 GB 153.6 GB 307.2 GB

1024 FP16 2 2.048 GB 20.48 GB 51.2 GB 102.4 GB 204.8 GB

2048 BF16 2 4.096 GB 40.96 GB 102.4 GB 204.8 GB 409.6 GB

4096 INT8 1 4.096 GB 40.96 GB 102.4 GB 204.8 GB 409.6 GB

Raw Vector Requirements:
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How Much RAM Does My Data Need?

CXL 3.1 Specification Document
Attribute Value

Original PDF File Size 11.68 MB

Number of Pages 1,166

Number of Paragraphs 7,335

Number of Words 422,967

Number of Characters 2,691,875

Number of Tables 700

Number of Images 335

Calculations are close approximations for illustration only.

Attribute Value

Embedding Model OpenAI's text-embedding-ada-002

Number of Tokens 
(Document Text) 538,375 tokens

Number of Vectors 
(Document Text) 1,307 vectors

Number of Vectors (Tables) 700 vectors

Number of Vectors (Images)
(150 tokens per image) 122 vectors

Total Number of Vectors 2,129 vectors

Memory per Vector 
(1536 * 4 bytes) 6,144 bytes (6 KB)

Total Memory for Raw Vectors 13.06MB

Total Memory with DB Overhead
(Assume 50%) 19.59MB

Properties Used:
- Chunk Size: 512
- Chunk Overlap: 100
- Effective Chunk Size: 412
- Vector Dimensionality: 1536
- 5 Characters per Token
- 150 Tokens per Figure description
- FP32 Vector Data Type (4 bytes)
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The Cost of Storing Your Data at Scale (Public Cloud)

A cost comparison table using Qdrant’s cloud calculator, which provides insights into the 
monthly expenses using reserved AWS instances for various vector sizes and quantities 
(RAS is not considered here)

Reference: https://stevescargall.com/blog/2024/08/how-much-ram-could-a-vector-database-use-if-a-vector-database-could-use-ram/

Vector Size 1 Million 5 Million 10 Million 25 Million 50 Million 100 Million

384 $219.00 $219.00 $219.00 $438.00 $876.00 $1,752.00

1024 $219.00 $438.00 $876.00 $1,752.00 $3,504.00 $7,008.00

2048 $438.00 $876.00 $1,752.00 $3,504.00 $7,008.00 $14,016.00

4096 $876.00 $1,752.00 $3,504.00 $7,008.00 $14,016.00 $19,681.00

Qdrant’s cloud calculator limits instances to 256GB RAM and will scale out across nodes if 
more memory is required. This adds complexity (sharding) and network latency.

https://cloud.qdrant.io/calculator
https://cloud.qdrant.io/calculator
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Cost of Storing Your Data (On-Prem) using DRAM & CXL

Configurations 
(Dual CPU, unless 
otherwise noted)

Server Memory Spec Socket DRAM - DDR 5 CXL DRAM
Total Size 

(GB)
Total 
Cost

Per GB 
Cost

DIMM 
size (GB)

# of 
DIMMs

Size 
Subtotal

Cost 
Subtotal

DIMM 
type

DIMM 
size (GB)

# of DIMMs 
per AIC

# of 
AICs

Size 
Subtotal

Cost 
Subtotal

A. Socket DRAM 4,096 $46,080 $11.25 128 32 4,096 $46,080
B. Socket & CXL DRAM 4,096 $22,928 $5.60 64 32 2,048 $6,464 DDR5 64 8 4 2,048 $16,464
C. Socket & CXL DRAM 4,096 $20,072 $4.90 64 32 2,048 $6,464 DDR4 128 8 2 2,048 $13,608

D. Socket DRAM, Quad 
CPU 8,192 $92,160 $11.25 128 64 8,192 $92,160
E. Socket & CXL DRAM 8,192 $47,288 $5.77 64 32 2,048 $6,464 DDR4 128 8 6 6,144 $40,824

F. Socket & CXL DRAM 11,264 $62,656 $5.56 96 32 3,072 $12,224 DDR4 128 8 8 8,192 $50,432

G. Socket & CXL DRAM, 
Quad CPU 32,768 $425,600 $12.99 256 64 16,384 $204,800 DDR5 256 8 8 16,384 $220,800

DRAM Pricing from May 2024
CXL Pricing is estimated
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In-Memory Data Stores
Accessing Your Data at Memory Speeds
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MemVerge GISMO
Uses CXL 3.0 Sharing
Object Store
Access Data using PUT(), 

GET(), DELETE(), UPDATE()
Not Persistent

FAMFS
Uses CXL 3.0 Sharing
 File System
Access Data using open(), 

close(), read(), write(),…
Not Persistent

In-Memory Data Stores

Products are in development
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Call To Action
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Call To Action

 “The Future is Now! Don’t Wait.” Andrey Kudryavtsev, Micron
 Talk to your OEM for system and device information and availability.
Use QEMU CXL Emulation Features to become familiar with CXL
 Attend the “Emulating CXL with QEMU” session at 13:30-14:20 in Cypress

 Join and Contribute to the Communities that matter to you

https://www.sniadeveloper.org/events/agenda/session/718
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Please take a moment to rate this session. 
Your feedback is important to us. 

Thank You
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